AbstractRgg family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in Streptococcus species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg-SHP and Rgg-target DNA promoter specificity was unknown. To close this gap, we determined the cryo-EM structure of Streptococcus thermophilus Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures to that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both S. dysgalactiae Rgg2 and S. thermophilus Rgg3 in complex with their target DNA promoters. The physiological importance of the observed Rgg-DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure-function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of the SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.Significance StatementSecreted peptide pheromones regulate critical biological processes in Gram-positive bacteria. In streptococci such as the human pathogen S. pyogenes, oligopeptide pheromones, like the short hydrophobic peptides (SHPs), regulate virulence, antimicrobial resistance, and biofilm formation. SHPs directly regulate the activity of transcription factors called Rgg2 and Rgg3. We present the cryo-EM structure of Rgg3 in complex with SHP3, as well as X-ray crystal structures of Rgg2 bound to target promoter DNA, Rgg3 bound to target promoter DNA, and Rgg3 alone. Based on the cryo-EM, X-ray crystallographic, biochemical, and genetic studies presented here, we provide not only detailed mechanistic insight into the molecular basis of Rgg3-SHP3, Rgg2-DNA, and Rgg3-DNA binding specificity, but also a new model of transcription factor regulatory interplay.