nrf2 protein
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 55)

H-INDEX

31
(FIVE YEARS 8)

Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0004572021
Author(s):  
Shota Kaseda ◽  
Yuya Sannomiya ◽  
Jun Horizono ◽  
Jun Kuwazuru ◽  
Mary Ann Suico ◽  
...  

Background Bardoxolone methyl activates nuclear factor erythroid 2 related factor 2 (Nrf2) via covalent binding and irreversible inhibition of Kelch-like ECH-associated protein-1 (Keap1), the negative regulator of Nrf2. Ongoing clinical trials of Bardoxolone methyl show promising effects for patients with chronic kidney disease (CKD). But the direct inhibition of Keap1-Nrf2 protein-protein interaction (PPI) as an approach to activate Nrf2 is less explored. Methods We developed a non-covalent Nrf2 activator UBE-1099, which highly selectively inhibits Keap1-Nrf2 PPI, and evaluated its efficacy on progressive phenotype in Alport syndrome mouse model (Col4a5-G5X). Results  Similar to Bardoxolone methyl, UBE-1099 transiently increased proteinuria and reduced plasma creatinine in Alport mice. Importantly, UBE-1099 improved the glomerulosclerosis, renal inflammation and fibrosis, and prolonged the lifespan of Alport mice. UBE-1099 ameliorated the dysfunction of Nrf2 signaling in renal tissue of Alport mice. Moreover, transcriptome analysis in glomerulus showed that UBE-1099 induced the expression of genes associated with cell cycle and cytoskeleton, which may explain its unique mechanism of improvement such as glomerular morphological change. Conclusions UBE-1099 significantly ameliorates the progressive phenotype in Alport mice. Our results firstly revealed the efficacy of Keap1-Nrf2 PPI inhibitor for glomerulosclerosis and presents a potential therapeutic drug for CKD.


2021 ◽  
Author(s):  
Luying Cui ◽  
Qi Zhang ◽  
Jiaqi Zhang ◽  
Heng Wang ◽  
Junsheng Dong ◽  
...  

Abstract Background Postpartum uterine infection can lead to endometrial inflammation and oxidative damage. Progesterone makes the animal more susceptible to uterine infection. Progesterone has been proved to play an anti-inflammatory role in inhibiting uterine innate immunity, and to reduce tissue oxidative damage. But the effect of progesterone on the oxidative damage of bovine endometrium has not been reported. The purpose of this study was to explore the effect and mechanism of progesterone (1, 3, and 5 ng/mL) on oxidative damage in primary bovine endometrial epithelial cells (BEEC) induced by lipopolysaccharide (LPS) from Escherichia coli. Results Compared with the LPS group, there were decreases (P < 0.05) in the levels of reactive oxygen and malondialdehyde, and increases (P < 0.05) in the activities of superoxide dismutase and catalase, and total antioxidant capacity in the cotreatment groups of progesterone and LPS. The cotreatment of LPS and P4 upregulated (P < 0.05) the mRNA abundance of antioxidant genes and the key protein levels in Nrf2/Keap1 pathway, and promoted the Nrf2 protein to enter the nucleus. The use of progesterone receptor antagonist mifepristone reversed the antioxidative effect of progesterone. Conclusions Progesterone protects BEEC from LPS-induced oxidative damage by activating Nrf2/Keap1 pathway through progesterone receptor.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Jing Chen ◽  
Jin-qian Liang ◽  
Yun-Fang Zhen ◽  
Lei Chang ◽  
Zhen-tao Zhou ◽  
...  

AbstractActivation of nuclear-factor-E2-related factor 2 (Nrf2) signaling can protect human osteoblasts from dexamethasone-induced oxidative injury. DDB1 and CUL4 associated factor 1 (DCAF1) is a novel ubiquitin E3 ligase for Nrf2 protein degradation. We identified a novel DCAF1-targeting miRNA, miR-3175. RNA pull-down, Argonaute 2 RNA-immunoprecipitation, and RNA fluorescent in situ hybridization results confirmed a direct binding between miR-3175 and DCAF1 mRNA in primary human osteoblasts. DCAF1 3′-untranslated region luciferase activity and its expression were significantly decreased after miR-3175 overexpression but were augmented with miR-3175 inhibition in human osteoblasts and hFOB1.19 osteoblastic cells. miR-3175 overexpression activated Nrf2 signaling, causing Nrf2 protein stabilization, antioxidant response (ARE) activity increase, and transcription activation of Nrf2-dependent genes in human osteoblasts and hFOB1.19 cells. Furthermore, dexamethasone-induced oxidative injury and apoptosis were largely attenuated by miR-3175 overexpression in human osteoblasts and hFOB1.19 cells. Importantly, shRNA-induced silencing or CRISPR/Cas9-mediated Nrf2 knockout abolished miR-3175 overexpression-induced osteoblast cytoprotection against dexamethasone. Conversely, DFAC1 knockout, by the CRISPR/Cas9 method, activated the Nrf2 cascade and inhibited dexamethasone-induced cytotoxicity in hFOB1.19 cells. Importantly, miR-3175 expression was decreased in necrotic femoral head tissues of dexamethasone-taking patients, where DCAF1 mRNA was upregulated. Together, silencing DCAF1 by miR-3175 activated Nrf2 signaling to inhibit dexamethasone-induced oxidative injury and apoptosis in human osteoblasts.


2021 ◽  
Author(s):  
Siwen Li ◽  
Yu Ma ◽  
Shuzi Ye ◽  
Ying Su ◽  
Die Hu ◽  
...  

Abstract As an issue of widespread concern, microplastics pollution has emerged as a harmful environmental pollutant. Nanoplastics (NaPs) has reported to accumulate in the testes and cause degeneration in the seminiferous tubules. However, the current research involving NaPs-induced reproductive toxicity remains poorly understood. The current work aimed to investigate the mechanisms of NaPs-induced reproductive injury in vitro. At first, we found that 80 nm fluorescent NaPs could enter into GC-2spd(ts) cells by fluorescent inverted microscope. Our results also demonstrated that suppression of reactive oxygen species (ROS) inhibited NaPs-triggered mitochondrial apoptosis and autophagy in GC-2spd(ts) cells. We also found that NaPs treatment did not change the interaction between nuclear factor erythroid-derived 2-related factor (Nrf2) and Kelch-like ECH associated protein 1 (Keap1), while inhibiting nuclear accumulation of Nrf2 protein. Further in vitro experiments showed that NaPs-induced reproductive toxicity associated with reducing dimerize pyruvate kinase M2 (PKM2), which are ascribed to the loss of Nrf2. Meanwhile, improving nuclear accumulation of Nrf2 might interact with PKM2 to rescue mitochondrial apoptosis caused by NaPs. Together, this study highlight that disturbing Nrf2-PKM2 signaling is essential process of NaPs-induced reproductive toxicity and provide valuable insights into the mechanism of microplastics-induced reproductive toxicity.


2021 ◽  
Vol 22 (20) ◽  
pp. 11233
Author(s):  
Katarzyna Dąbrowska ◽  
Katarzyna Skowrońska ◽  
Mariusz Popek ◽  
Jan Albrecht ◽  
Magdalena Zielińska

Ammonia toxicity in the brain primarily affects astrocytes via a mechanism in which oxidative stress (OS), is coupled to the imbalance between glutamatergic and GABAergic transmission. Ammonia also downregulates the astrocytic N system transporter SN1 that controls glutamine supply from astrocytes to neurons for the replenishment of both neurotransmitters. Here, we tested the hypothesis that activation of Nrf2 is the process that links ammonia-induced OS formation in astrocytes to downregulation and inactivation of SN1 and that it may involve the formation of a complex between Nrf2 and Sp1. Treatment of cultured cortical mouse astrocytes with ammonia (5 mM NH4Cl for 24 h) evoked Nrf2 nuclear translocation, increased its activity in a p38 MAPK pathway-dependent manner, and enhanced Nrf2 binding to Slc38a3 promoter. Nrf2 silencing increased SN1 mRNA and protein level without influencing astrocytic [3H]glutamine transport. Ammonia decreased SN1 expression in Nrf2 siRNA treated astrocytes and reduced [3H]glutamine uptake. In addition, while Nrf2 formed a complex with Sp1 in ammonia-treated astrocytes less efficiently than in control cells, treatment of astrocytes with hybrid-mode inactivated Sp1-Nrf2 complex (Nrf2 silencing + pharmacological inhibition of Sp1) did not affect SN1 protein level in ammonia-treated astrocytes. In summary, the results document that SN1 transporter dysregulation by ammonia in astrocytes involves activation of Nrf2 but does not require the formation of the Sp1-Nrf2 complex.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elena V. Knatko ◽  
Cecilia Castro ◽  
Maureen Higgins ◽  
Ying Zhang ◽  
Tadashi Honda ◽  
...  

AbstractTranscription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its main negative regulator, Kelch-like ECH associated protein 1 (Keap1), are at the interface between redox and intermediary metabolism. Nrf2 activation is protective in models of human disease and has benefits in clinical trials. Consequently, the Keap1/Nrf2 protein complex is a drug target. However, in cancer Nrf2 plays a dual role, raising concerns that Nrf2 activators may promote growth of early neoplasms. To address this concern, we examined the role of Nrf2 in development of colorectal adenomas by employing genetic, pharmacological, and metabolomic approaches. We found that colorectal adenomas that form in Gstp−/−: ApcMin/+ mice are characterized by altered one-carbon metabolism and that genetic activation, but not disruption of Nrf2, enhances these metabolic alterations. However, this enhancement is modest compared to the magnitude of metabolic differences between tumor and peri-tumoral tissues, suggesting that the metabolic changes conferred by Nrf2 activation may have little contribution to the early stages of carcinogenesis. Indeed, neither genetic (by Keap1 knockdown) nor pharmacological Nrf2 activation, nor its disruption, affected colorectal adenoma formation in this model. We conclude that pharmacological Nrf2 activation is unlikely to impact the early stages of development of colorectal cancer.


Author(s):  
Ayobami Dare ◽  
Ahmed A Elrashedy ◽  
Mahendra L. Channa ◽  
Anand Nadar

Background: Diabetic cardiotoxicity is commonly associated with oxidative injury, inflammation, and endothelial dysfunction. L-ergothioneine (L-egt), a diet-derived amino acid, has been reported to decrease mortality and risk of cardiovascular injury, provides cytoprotection to tissues exposed to oxidative damage, and prevents diabetes-induced perturbation. Objective: This study investigated the cardioprotective effects of L-egt on diabetes-induced cardiovascular injuries and its probable mechanism of action. Methods: Twenty-four male Sprague-Dawley rats were divided into non-diabetic (n=6) and diabetic groups (n=18). Six weeks after the induction of diabetes, the diabetic rats were divided into three groups (n=6) and administered distilled water, L-egt (35mg/kg), and losartan (20mg/kg) by oral gavage for six weeks. Blood glucose and mean arterial pressure (MAP) were recorded pre-and post-treatment, while biochemical, ELISA, and Rt-PCR analyses were conducted to determine inflammatory, injury-related and antioxidant biomarkers in cardiac tissue after euthanasia. Also, an in-silico study, including docking and molecular dynamic simulations of L-egt toward the Keap1-Nrf2 protein complex, was done to provide a basis for the molecular antioxidant mechanism of L-egt. Results: Administration of L-egt to diabetic animals reduced serum triglyceride, water intake, MAP, biomarkers of cardiac injury (CK-MB, LDH), lipid peroxidation, and inflammation. Also, L-egt increased body weight, antioxidant enzymes, upregulated Nrf2, HO-1, NQO1 expression, and decreased Keap1 expression. The in-silico study showed that L-egt inhibits Keap1-Nrf2 complex by binding to the active site of Nrf2 protein, thereby preventing its degradation. Conclusion: L-egt protects against diabetes-induced cardiovascular injury via the upregulation of Keap1-Nrf2 pathway and its downstream cytoprotective antioxidants.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yue-huan Zheng ◽  
Jian-jun Yang ◽  
Pei-jun Tang ◽  
Yuan Zhu ◽  
Zhe Chen ◽  
...  

AbstractAn ultra-large structure-based virtual screening has discovered iKeap1 as a direct Keap1 inhibitor that can efficiently activate Nrf2 signaling. We here tested its potential effect against hydrogen peroxide (H2O2)-induced oxidative injury in osteoblasts. In primary murine and human osteoblasts, iKeap1 robustly activated Nrf2 signaling at micromole concentrations. iKeap1 disrupted Keap1-Nrf2 association, causing Nrf2 protein stabilization, cytosol accumulation and nuclear translocation in murine and human osteoblasts. The anti-oxidant response elements (ARE) activity and transcription of Nrf2-ARE-dependent genes (including HO1, NQO1 and GCLC) were increased as well. Significantly, iKeap1 pretreatment largely ameliorated H2O2-induced reactive oxygen species production, lipid peroxidation and DNA damage as well as cell apoptosis and programmed necrosis in osteoblasts. Moreover, dexamethasone- and nicotine-induced oxidative injury and apoptosis were alleviated by iKeap1. Importantly, Nrf2 shRNA or CRISPR/Cas9-induced Nrf2 knockout completely abolished iKeap1-induced osteoblast cytoprotection against H2O2. Conversely, CRISPR/Cas9-induced Keap1 knockout induced Nrf2 cascade activation and mimicked iKeap1-induced cytoprotective actions in murine osteoblasts. iKeap1 was ineffective against H2O2 in the Keap1-knockout murine osteoblasts. Collectively, iKeap1 activated Nrf2 signaling cascade to inhibit H2O2-induced oxidative injury and death of osteoblasts.


Sign in / Sign up

Export Citation Format

Share Document