homologous desensitization
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 5)

H-INDEX

30
(FIVE YEARS 0)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chirine Toufaily ◽  
Jérôme Fortin ◽  
Carlos AI Alonso ◽  
Evelyne Lapointe ◽  
Xiang Zhou ◽  
...  

Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.


2021 ◽  
Author(s):  
Chirine Toufaily ◽  
Jerome Fortin ◽  
Carlos A.I. Alonso ◽  
Evelyne Lapointe ◽  
Xiang Zhou ◽  
...  

Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.


2021 ◽  
Vol 118 (37) ◽  
pp. e2026491118
Author(s):  
Changxiu Qu ◽  
Ji Young Park ◽  
Min Woo Yun ◽  
Qing-tao He ◽  
Fan Yang ◽  
...  

Arrestins were initially identified for their role in homologous desensitization and internalization of G protein–coupled receptors. Receptor-bound arrestins also initiate signaling by interacting with other signaling proteins. Arrestins scaffold MAPK signaling cascades, MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K), and MAPK. In particular, arrestins facilitate ERK1/2 activation by scaffolding ERK1/2 (MAPK), MEK1 (MAP2K), and Raf (MAPK3). However, the structural mechanism underlying this scaffolding remains unknown. Here, we investigated the mechanism of arrestin-2 scaffolding of cRaf, MEK1, and ERK2 using hydrogen/deuterium exchange–mass spectrometry, tryptophan-induced bimane fluorescence quenching, and NMR. We found that basal and active arrestin-2 interacted with cRaf, while only active arrestin-2 interacted with MEK1 and ERK2. The ATP binding status of MEK1 or ERK2 affected arrestin-2 binding; ATP-bound MEK1 interacted with arrestin-2, whereas only empty ERK2 bound arrestin-2. Analysis of the binding interfaces suggested that the relative positions of cRaf, MEK1, and ERK2 on arrestin-2 likely facilitate sequential phosphorylation in the signal transduction cascade.


2021 ◽  
Vol 120 (3) ◽  
pp. 211a
Author(s):  
John J. Tesmer ◽  
Qiuyan Chen ◽  
Manolo Plasencia ◽  
Zhuang Li ◽  
Leifu Chang ◽  
...  

Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Eugenia V. Gurevich ◽  
Vsevolod V. Gurevich

Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.


2018 ◽  
Vol 112 ◽  
pp. 114-123 ◽  
Author(s):  
Ana-Maricela García-Gálvez ◽  
Juan Escamilla-Sánchez ◽  
Catalina Flores-Maldonado ◽  
Rubén-Gerardo Contreras ◽  
Juan-Manuel Arias ◽  
...  

2017 ◽  
Vol 214 (7) ◽  
pp. 2023-2040 ◽  
Author(s):  
Christelle Freitas ◽  
Monika Wittner ◽  
Julie Nguyen ◽  
Vincent Rondeau ◽  
Vincent Biajoux ◽  
...  

The CXCL12/CXCR4 signaling exerts a dominant role in promoting hematopoietic stem and progenitor cell (HSPC) retention and quiescence in bone marrow. Gain-of-function CXCR4 mutations that affect homologous desensitization of the receptor have been reported in the WHIM Syndrome (WS), a rare immunodeficiency characterized by lymphopenia. The mechanisms underpinning this remain obscure. Using a mouse model with a naturally occurring WS-linked gain-of-function Cxcr4 mutation, we explored the possibility that the lymphopenia in WS arises from defects at the HSPC level. We reported that Cxcr4 desensitization is required for quiescence/cycling balance of murine short-term hematopoietic stem cells and their differentiation into multipotent and downstream lymphoid-biased progenitors. Alteration in Cxcr4 desensitization resulted in decrease of circulating HSPCs in five patients with WS. This was also evidenced in WS mice and mirrored by accumulation of HSPCs in the spleen, where we observed enhanced extramedullary hematopoiesis. Therefore, efficient Cxcr4 desensitization is critical for lymphoid differentiation of HSPCs, and its impairment is a key mechanism underpinning the lymphopenia observed in mice and likely in WS patients.


Molecules ◽  
2016 ◽  
Vol 22 (1) ◽  
pp. 22 ◽  
Author(s):  
Ghina Shaaban ◽  
Mabayoje Oriowo ◽  
Suleiman Al-Sabah

2016 ◽  
Vol 13 (1) ◽  
Author(s):  
Ramy Habashy Malty ◽  
Andy Hudmon ◽  
Jill C. Fehrenbacher ◽  
Michael R. Vasko

Sign in / Sign up

Export Citation Format

Share Document