photon coupling
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 67)

H-INDEX

34
(FIVE YEARS 6)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
V. A. S. V. Bittencourt ◽  
I. Liberal ◽  
S. Viola Kusminskiy

Author(s):  
Xiaoxiao Yang ◽  
Tiejun Wang ◽  
Chuan Wang

Abstract Mangons are newly developed as the qubits for quantum storage and information process. Here in this work, we focus on a hybrid quantum system containing two antiferromagnets, and the entanglement between magnons in the antiferromagnets could be generated through the strong coupling mediated by the same microwave mode. Moreover, we numerically simulated the process with the feasible parameters. And the influence of the system parameters, such as the magnon-photon coupling rate, the detuning, the bias magnetic field and the dissipation on the entanglement are discussed. By adjusting some of the experimental parameters, we show that two antiferromagnets can produce a large entanglement, which is a result that has not been found in other quantum systems before. Our findings may provide a potential platform for the completion of related quantum tasks in the future.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jie Ren ◽  
Daohan Wang ◽  
Lei Wu ◽  
Jin Min Yang ◽  
Mengchao Zhang

Abstract Axion-like particles (ALPs) appear in various new physics models with spon- taneous global symmetry breaking. When the ALP mass is in the range of MeV to GeV, the cosmology and astrophysics bounds are so far quite weak. In this work, we investi- gate such light ALPs through the ALP-strahlung production processes pp → W±a, Za with the sequential decay a → γγ at the 14 TeV LHC with an integrated luminosity of 3000 fb−1 (HL-LHC). Building on the concept of jet image which uses calorimeter towers as the pixels of the image and measures a jet as an image, we investigate the potential of machine learning techniques based on convolutional neural network (CNN) to identify the highly boosted ALPs which decay to a pair of highly collimated photons. With the CNN tagging algorithm, we demonstrate that our approach can extend current LHC sensitivity and probe the ALP mass range from 0.3 GeV to 5 GeV. The obtained bounds are stronger than the existing limits on the ALP-photon coupling.


2021 ◽  
Vol 172 ◽  
pp. 112747
Author(s):  
Jie Li ◽  
Hongchun Wu ◽  
Qingming He ◽  
Wei Shen ◽  
Qi Zheng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
María Barra-Burillo ◽  
Unai Muniain ◽  
Sara Catalano ◽  
Marta Autore ◽  
Fèlix Casanova ◽  
...  

AbstractStrong coupling between molecular vibrations and microcavity modes has been demonstrated to modify physical and chemical properties of the molecular material. Here, we study the less explored coupling between lattice vibrations (phonons) and microcavity modes. Embedding thin layers of hexagonal boron nitride (hBN) into classical microcavities, we demonstrate the evolution from weak to ultrastrong phonon-photon coupling when the hBN thickness is increased from a few nanometers to a fully filled cavity. Remarkably, strong coupling is achieved for hBN layers as thin as 10 nm. Further, the ultrastrong coupling in fully filled cavities yields a polariton dispersion matching that of phonon polaritons in bulk hBN, highlighting that the maximum light-matter coupling in microcavities is limited to the coupling strength between photons and the bulk material. Tunable cavity phonon polaritons could become a versatile platform for studying how the coupling strength between photons and phonons may modify the properties of polar crystals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Man Ho Chan

AbstractAxion is one of the most popular candidates of the cosmological dark matter. Recent studies considering the misalignment production of axions suggest some benchmark axion mass ranges near $$m_a \sim 20$$ m a ∼ 20 μeV. For such axion mass, the spontaneous decay of axions can give photons in radio band frequency $$\nu \sim 1{-}3$$ ν ∼ 1 - 3 GHz, which can be detected by radio telescopes. In this article, we show that using radio data of galaxy clusters would be excellent to constrain axion dark matter. Specifically, by using radio data of the Bullet cluster (1E 0657-55.8), we find that the upper limit of the axion–photon coupling constant can be constrained to $$g_{a \gamma \gamma } \sim 10^{-12}{-}10^{-11}$$ g a γ γ ∼ 10 - 12 - 10 - 11 GeV$$^{-1}$$ - 1 for $$m_a \sim 20$$ m a ∼ 20 μeV, which is tighter than the limit obtained by the CERN Axion Solar Telescope (CAST).


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
A. Álvarez Melcón ◽  
S. Arguedas Cuendis ◽  
J. Baier ◽  
K. Barth ◽  
H. Bräuninger ◽  
...  

Abstract We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of gaγ ≳ 4 × 10−13 GeV−1 over a mass range of 34.6738 μeV < ma< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.


2021 ◽  
Vol 119 (10) ◽  
pp. 102402
Author(s):  
Qi Zhang ◽  
Yitong Sun ◽  
Zhijian Lu ◽  
Jiajun Guo ◽  
Jianshu Xue ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document