round window membrane
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 61)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
Vol 11 (2) ◽  
pp. 316
Author(s):  
Madeleine St. Peter ◽  
Athanasia Warnecke ◽  
Hinrich Staecker

In the clinical setting, the pathophysiology of sensorineural hearing loss is poorly defined and there are currently no diagnostic tests available to differentiate between subtypes. This often leaves patients with generalized treatment options such as steroids, hearing aids, or cochlear implantation. The gold standard for localizing disease is direct biopsy or imaging of the affected tissue; however, the inaccessibility and fragility of the cochlea make these techniques difficult. Thus, the establishment of an indirect biopsy, a sampling of inner fluids, is needed to advance inner ear diagnostics and allow for the development of novel therapeutics for inner ear disease. A promising source is perilymph, an inner ear liquid that bathes multiple structures critical to sound transduction. Intraoperative perilymph sampling via the round window membrane of the cochlea has been successfully used to profile the proteome, metabolome, and transcriptome of the inner ear and is a potential source of biomarker discovery. Despite its potential to provide insight into inner ear pathologies, human perilymph sampling continues to be controversial and is currently performed only in conjunction with a planned procedure where the inner ear is opened. Here, we review the safety of procedures in which the inner ear is opened, highlight studies where perilymph analysis has advanced our knowledge of inner ear diseases, and finally propose that perilymph sampling could be done as a stand-alone procedure, thereby advancing our ability to accurately classify sensorineural hearing loss.


2021 ◽  
Vol 162 (51) ◽  
pp. 2055-2060

Összefoglaló. A hirtelen halláscsökkenés patofiziológiája még nagyrészt tisztázatlan, így oki terápia nem lehetséges. Az elsődleges kezelést a helyileg vagy szisztémásan adott kortikoszteroid jelenti, egységes protokoll azonban nem áll rendelkezésre. Nagy vagy súlyos fokú hirtelen halláscsökkenés esetén kóroki tényezőként felmerül a perilymphafistula lehetősége még azoknál a betegeknél is, akiknél nem szerepel trauma az anamnézisben. A kórkép műtéti kezelése a dobüreg feltárását követően a belső fül ablakainak obliterálása. Amennyiben ez a megoldás nem eredményez megfelelő hallásjavulást, hagyományos vagy implantálható hallókészülékek alkalmazása javasolt. A közleményben részletezett esetünkben teljes siketséggel járó, jobb oldali hirtelen halláscsökkenés alakult ki, melynek hátterében egyértelmű okot azonosítani nem sikerült. Az eredménytelen kombinált, intratympanalis és szisztémás szteroidkezelést követően exploratív tympanotomiát végeztünk, melynek során a belső fül ablakait obliteráltuk. Hallásjavulást ezt követően sem sikerült kimutatni, így cochlearis implantáció elvégzése mellett döntöttünk. Az implantációt a kerek ablakon keresztül végeztük, mely alapján kijelenthetjük, hogy az előzetes kerekablak-obliteráció nem zárja ki a későbbi cochlearis implantációt. Orv Hetil. 2021; 162(51): 2055–2060. Summary. The pathophysiology of sudden sensorineural hearing loss is mainly unknown, therefore no causative treatment exists. Systemic and local administration of corticosteroids serves as first line therapy although protocols vary. In cases of severe or profound hearing loss with no improvement for medical therapy, perilymphatic fistulae can be assumed even without any history of trauma. Therefore, inner ear window obliteration as a primary surgical option in the early stage can be considered. For patients without complete recovery, conventional hearing aids or implantable hearing devices can be offered. In our case report, we present a patient with right sided idiopathic sudden deafness. After failure of conservative combined intratympanic and systemic steroid therapy, explorative tympanotomy and obliteration of the inner ear windows were performed. As no hearing improvement was witnessed, successful cochlear implantation via round window insertion was performed. Our case justifies that obliterating the round window membrane does not rule out further successful cochlear implantation. Orv Hetil. 2021; 162(51): 2055–2060.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fabian Mueller ◽  
Jan Hermann ◽  
Stefan Weber ◽  
Gabriela O'Toole Bom Braga ◽  
Vedat Topsakal

Objective: During robotic cochlear implantation, an image-guided robotic system provides keyhole access to the scala tympani of the cochlea to allow insertion of the cochlear implant array. To standardize minimally traumatic robotic access to the cochlea, additional hard and soft constraints for inner ear access were proposed during trajectory planning. This extension of the planning strategy aims to provide a trajectory that preserves the anatomical and functional integrity of critical intra-cochlear structures during robotic execution and allows implantation with minimal insertion angles and risk of scala deviation.Methods: The OpenEar dataset consists of a library with eight three-dimensional models of the human temporal bone based on computed tomography and micro-slicing. Soft constraints for inner ear access planning were introduced that aim to minimize the angle of cochlear approach, minimize the risk of scala deviation and maximize the distance to critical intra-cochlear structures such as the osseous spiral lamina. For all cases, a solution space of Pareto-optimal trajectories to the round window was generated. The trajectories satisfy the hard constraints, specifically the anatomical safety margins, and optimize the aforementioned soft constraints. With user-defined priorities, a trajectory was parameterized and analyzed in a virtual surgical procedure.Results: In seven out of eight cases, a solution space was found with the trajectories safely passing through the facial recess. The solution space was Pareto-optimal with respect to the soft constraints of the inner ear access. In one case, the facial recess was too narrow to plan a trajectory that would pass the nerves at a sufficient distance with the intended drill diameter. With the soft constraints introduced, the optimal target region was determined to be in the antero-inferior region of the round window membrane.Conclusion: A trend could be identified that a position between the antero-inferior border and the center of the round window membrane appears to be a favorable target position for cochlear tunnel-based access through the facial recess. The planning concept presented and the results obtained therewith have implications for planning strategies for robotic surgical procedures to the inner ear that aim for minimally traumatic cochlear access and electrode array implantation.


2021 ◽  
Author(s):  
So-Young Jung ◽  
Zion Kang ◽  
Soonmin Kwon ◽  
Juhye Lee ◽  
Subin Kim ◽  
...  

Abstract Background: Dexamethasone sodium phosphate (Dex-SP) is the most commonly used drug for intratympanic injection in acute hearing loss, but its penetration efficiency into the inner ear is very low. To address this problem, we evaluated the possibility of dexamethasone nanosuspensions as intratympanic injection because the lipophilicity of drugs can affect their permeation of the round window membrane, an important pathway from the middle ear to the cochlea.Results: Three types of dexamethasone nanosuspensions were prepared; the dexamethasone nanocrystals in the three nanosuspensions were between approximately 250 and 350 nm in size. In order to compare the efficiency of Dex-SP and a dexamethasone nanosuspension in delivering dexamethasone to the inner ear, the concentrations of dexamethasone in perilymph and cochlear tissues were compared by liquid chromatography–mass spectrometry. The dexamethasone nanosuspensions showed significantly higher drug concentrations in perilymph and cochlear tissue than Dex-SP at 6 h; interestingly, animals treated with a nanosuspension showed a 26-fold higher dexamethasone concentration in the cochlear tissue than the Dex-SP group. In addition, the dexamethasone nanosuspension achieved better glucocorticoid receptor phosphorylation than Dex-SP both in vitro and in vivo, and in the ototoxic animal model, it showed a significantly better hearing protective effect than Dex-SP against ototoxic drugs. In safety evaluation, the nanosuspension showed no toxicity at concentrations up to 20 mg/mL in an in vivo test.Conclusions: A nanosuspension of dexamethasone was able to deliver dexamethasone to the cochlea very safely and efficiently and showed potential as a formula for intratympanic injection. In addition, it can be applied in studies on the delivery of various hydrophobic antioxidants to treat acute hearing loss.


2021 ◽  
Vol 22 (18) ◽  
pp. 10061
Author(s):  
Seong-Hun Jeong ◽  
Yoonjoong Kim ◽  
Ah-Ra Lyu ◽  
Sun-Ae Shin ◽  
Tae Hwan Kim ◽  
...  

Delivery of substances into the inner ear via local routes is increasingly being used in clinical treatment. Studies have focused on methods to increase permeability through the round window membrane (RWM) and enhance drug diffusion into the inner ear. However, the clinical applications of those methods have been unclear and few studies have investigated the efficacy of methods in an inner ear injury model. Here, we employed the medium chain fatty acid caprate, a biologically safe, clinically applicable substance, to modulate tight junctions of the RWM. Intratympanic treatment of sodium caprate (SC) induced transient, but wider, gaps in intercellular spaces of the RWM epithelial layer and enhanced the perilymph and cochlear concentrations/uptake of dexamethasone. Importantly, dexamethasone co–administered with SC led to significantly more rapid recovery from noise–induced hearing loss at 4 and 8 kHz, compared with the dexamethasone-only group. Taken together, our data indicate that junctional modulation of the RWM by SC enhances dexamethasone uptake into the inner ear, thereby hastening the recovery of hearing sensitivity after noise trauma.


Author(s):  
Miguel Arriaga ◽  
Daniel N. Arteaga ◽  
Dimitrios Fafalis ◽  
Michelle Yu ◽  
Xun Wang ◽  
...  

Author(s):  
Silvia T. Erni ◽  
John C. Gill ◽  
Carlotta Palaferri ◽  
Gabriella Fernandes ◽  
Michelle Buri ◽  
...  

Sensorineural hearing loss is prevalent within society affecting the quality of life of 460 million worldwide. In the majority of cases, this is due to insult or degeneration of mechanosensory hair cells in the cochlea. In adult mammals, hair cell loss is irreversible as sensory cells are not replaced spontaneously. Genetic inhibition of Notch signaling had been shown to induce hair cell formation by transdifferentiation of supporting cells in young postnatal rodents and provided an impetus for targeting Notch pathway with small molecule inhibitors for hearing restoration. Here, the oto-regenerative potential of different γ-secretase inhibitors (GSIs) was evaluated in complementary assay models, including cell lines, organotypic cultures of the organ of Corti and cochlear organoids to characterize two novel GSIs (CPD3 and CPD8). GSI-treatment induced hair cell gene expression in all these models and was effective in increasing hair cell numbers, in particular outer hair cells, both in baseline conditions and in response to ototoxic damage. Hair cells were generated from transdifferentiation of supporting cells. Similar findings were obtained in cochlear organoid cultures, used for the first time to probe regeneration following sisomicin-induced damage. Finally, effective absorption of a novel GSI through the round window membrane and hair cell induction was attained in a whole cochlea culture model and in vivo pharmacokinetic comparisons of transtympanic delivery of GSIs and different vehicle formulations were successfully conducted in guinea pigs. This preclinical evaluation of targeting Notch signaling with novel GSIs illustrates methods of characterization for hearing restoration molecules, enabling translation to more complex animal studies and clinical research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi-Chun Lin ◽  
Cheng-Ping Shih ◽  
Hsin-Chien Chen ◽  
Ying-Liang Chou ◽  
Huey-Kang Sytwu ◽  
...  

The application of ultrasound microbubbles (USMBs) enhances the permeability of the round window membrane (RWM) and improves drug delivery to the inner ear. In this study, we investigated the efficiency of USMB-aided delivery of chitosan-coated gold nanoparticles (CS-AuNPs) and the mechanism of USMB-mediated enhancement of RMW permeability. We exposed mouse inner ears to USMBs at an intensity of 2 W/cm2 and then filled the tympanic bulla with CS-AuNPs or fluorescein isothiocyanate-decorated CS-AuNPs (FITC-CS-AuNPs). The membrane uptake of FITC-CS-AuNPs and their depth of permeation into the three-layer structure of the RWM, with or without prior USMB treatment, were visualized by z-stack confocal laser scanning microscopy. Ultrastructural changes in the RWM due to USMB-mediated cavitation appeared as sunburn-like peeling and various degrees of depression in the RWM surface, with pore-like openings forming in the outer epithelium. This disruption of the outer epithelium was paralleled by a transient reduction in tight junction (TJ)-associated protein levels in the RWM and an enhanced delivery of FITC-CS-AuNPs into the RWM. Without prior USMB exposure, the treatment with CS-AuNPs also caused a noticeable reduction in TJ proteins of the RWM. Our findings indicated that the combined treatment with USMBs and CS-AuNPs represents a promising and efficient drug and gene delivery vehicle for a trans-RWM approach for inner ear therapy. The outer epithelial layer of the RWM plays a decisive role in controlling the transmembrane transport of substances such as CS-AuNPs following the administration of USMBs. Most importantly, the enhanced permeation of AuNPs involved the transient disruption of the TJ-created paracellular barrier in the outer epithelium of the RWM.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3626
Author(s):  
Yi-Chun Lin ◽  
Yuan-Yung Lin ◽  
Hsin-Chien Chen ◽  
Chao-Yin Kuo ◽  
Ai-Ho Liao ◽  
...  

The application of insulin-like growth factor 1 (IGF-1) to the round window membrane (RWM) is an emerging treatment for inner ear diseases. RWM permeability is the key factor for efficient IGF-1 delivery. Ultrasound microbubbles (USMBs) can increase drug permeation through the RWM. In the present study, the enhancing effect of USMBs on the efficacy of IGF-1 application and the treatment effect of USMB-mediated IGF-1 delivery for noise-induced hearing loss (NIHL) were investigated. Forty-seven guinea pigs were assigned to three groups: the USM group, which received local application of recombinant human IGF-1 (rhIGF-1, 10 µg/µL) following application of USMBs to the RWM; the RWS group, which received IGF-1 application alone; and the saline-treated group. The perilymphatic concentration of rhIGF-1 in the USM group was 1.95- and 1.67- fold of that in the RWS group, 2 and 24 h after treatment, respectively. After 5 h of 118 dB SPL noise exposure, the USM group had the lowest threshold shift in auditory brainstem response, least loss of cochlear outer hair cells, and least reduction in the number of synaptic ribbons on postexposure day 28 among the three groups. The combination of USMB and IGF-1 led to a better therapeutic response to NIHL. Two hours after treatment, the USM group had significantly higher levels of Akt1 and Mapk3 gene expression than the other two groups. The most intense immunostaining for phosphor-AKT and phospho-ERK1/2 was detected in the cochlea in the USM group. These results suggested that USMB can be applied to enhance the efficacy of IGF-1 therapy in the treatment of inner ear diseases.


2021 ◽  
Vol 14 (6) ◽  
pp. 538
Author(s):  
Farzad Forouzandeh ◽  
Nuzhet N. Ahamed ◽  
Xiaoxia Zhu ◽  
Parveen Bazard ◽  
Krittika Goyal ◽  
...  

Here we present a 3D-printed, wirelessly controlled microsystem for drug delivery, comprising a refillable microreservoir and a phase-change peristaltic micropump. The micropump structure was inkjet-printed on the back of a printed circuit board around a catheter microtubing. The enclosure of the microsystem was fabricated using stereolithography 3D printing, with an embedded microreservoir structure and integrated micropump. In one configuration, the microsystem was optimized for murine inner ear drug delivery with an overall size of 19 × 13 × 3 mm3. Benchtop results confirmed the performance of the device for reliable drug delivery. The suitability of the device for long-term subcutaneous implantation was confirmed with favorable results of implantation of a microsystem in a mouse for six months. The drug delivery was evaluated in vivo by implanting four different microsystems in four mice, while the outlet microtubing was implanted into the round window membrane niche for infusion of a known ototoxic compound (sodium salicylate) at 50 nL/min for 20 min. Real-time shifts in distortion product otoacoustic emission thresholds and amplitudes were measured during the infusion, demonstrating similar results with syringe pump infusion. Although demonstrated for one application, this low-cost design and fabrication methodology is scalable for use in larger animals and humans for different clinical applications/delivery sites.


Sign in / Sign up

Export Citation Format

Share Document