reductional division
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yared Gutiérrez Pinzón ◽  
José Kenyi González Kise ◽  
Patricia Rueda ◽  
Arnaud Ronceret

During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.


2020 ◽  
Vol 6 (36) ◽  
pp. eabb1660
Author(s):  
Fernando Sánchez-Sáez ◽  
Laura Gómez-H ◽  
Orla M. Dunne ◽  
Cristina Gallego-Páramo ◽  
Natalia Felipe-Medina ◽  
...  

Meiotic reductional division depends on the synaptonemal complex (SC), a supramolecular protein assembly that mediates homologous chromosomes synapsis and promotes crossover formation. The mammalian SC has eight structural components, including SYCE1, the only central element protein with known causative mutations in human infertility. We combine mouse genetics, cellular, and biochemical studies to reveal that SYCE1 undergoes multivalent interactions with SC component SIX6OS1. The N terminus of SIX6OS1 binds and disrupts SYCE1’s core dimeric structure to form a 1:1 complex, while their downstream sequences provide a distinct second interface. These interfaces are separately disrupted by SYCE1 mutations associated with nonobstructive azoospermia and premature ovarian failure (POF), respectively. Mice harboring SYCE1’s POF mutation and a targeted deletion within SIX6OS1’s N terminus are infertile with failure of chromosome synapsis. We conclude that both SYCE1-SIX6OS1 binding interfaces are essential for SC assembly, thus explaining how SYCE1’s reported clinical mutations give rise to human infertility.


2020 ◽  
Author(s):  
Fernando Sánchez-Sáez ◽  
Laura Gómez-H ◽  
Orla M. Dunne ◽  
Cristina Gallego-Páramo ◽  
Natalia Felipe-Medina ◽  
...  

AbstractMeiotic reductional division is dependent on the synaptonemal complex (SC), a supramolecular protein assembly that mediates homologous chromosomes synapsis and promotes crossover formation. The mammalian SC is formed of eight structural components, including SYCE1, the only central element protein with known causative mutations in human infertility. We combine mouse genetics, cellular and biochemical studies to reveal that SYCE1 undergoes multivalent interactions with SC component SIX6OS1. The N-terminus of SIX6OS1 binds and disrupts SYCE1’s core dimeric structure to form a 1:1 complex, whilst their downstream sequences provide a distinct second interface. These interfaces are separately disrupted by SYCE1 mutations associated with non-obstructive azoospermia and premature ovarian failure, respectively. Mice harbouring SYCE1’s POF mutation and a targeted deletion within SIX6OS1’s N-terminus are infertile with failure of chromosome synapsis. We conclude that both SYCE1-SIX6OS1 binding interfaces are essential for SC assembly, thus explaining how SYCE1’s reported clinical mutations give rise to human infertility.


2009 ◽  
Vol 11 (9) ◽  
pp. 1103-1108 ◽  
Author(s):  
Xuexian Li ◽  
R. Kelly Dawe

2004 ◽  
Vol 3 (3) ◽  
pp. 598-609 ◽  
Author(s):  
Robert E. Malone ◽  
Stuart J. Haring ◽  
Kelley E. Foreman ◽  
Morgan L. Pansegrau ◽  
Sonja M. Smith ◽  
...  

ABSTRACT Two of the unique events that occur in meiosis are high levels of genetic recombination and the reductional division. Our previous work demonstrated that the REC102, REC104, REC114, and RAD50 genes, required to initiate meiotic recombination in Saccharomyces cerevisiae, are needed for the proper timing of the first meiotic (MI) division. If these genes are absent, the MI division actually begins at an earlier time. This paper demonstrates that the meiotic recombination genes MER2/REC107, SPO11, and MRE2 and the synaptonemal complex genes HOP1 and RED1 are also required for the normal delay of the MI division. A rec103/ski8 mutant starts the MI division at the same time as in wild-type cells. Our data indicate no obvious correlation between the timing of premeiotic S phase and the timing of the first division in Rec− mutants. Cells with rec102 or rec104 mutations form MI spindles before wild-type cells, suggesting that the initiation signal acts prior to spindle formation. Neither RAD9 nor RAD24 is needed to transduce the signal, which delays the first division. The timing of the MI division in RAD24 mutants indicates that the pachytene checkpoint is not active in Rec+ cells and suggests that the coordination between recombination and the MI division in wild-type cells may occur primarily due to the initiation signal. Finally, at least one of the targets of the recombination initiation signal is the NDT80 gene, a transcriptional regulator of middle meiotic gene expression required for the first division.


Sign in / Sign up

Export Citation Format

Share Document