reptilian species
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Hugo M. Mialon ◽  
Tilman Klumpp ◽  
Michael A. Williams

2021 ◽  
Vol 9 ◽  
Author(s):  
Karen Greig ◽  
Nicolas J. Rawlence

The pre-human Aotearoa New Zealand fauna was dominated by avian and reptilian species. Prior to first human settlement by East Polynesian colonists, the top predators were two giant raptorial birds. Aside from humans themselves, colonisation also resulted in the simultaneous introduction of two novel mammalian predators into this naive ecosystem, the kiore (Pacific rat) and kurī (Polynesian dog). While the ecological impacts of kiore are relatively well understood, those of kurī are difficult to assess, and as such kurī have frequently been disregarded as having any meaningful impact on New Zealand’s biodiversity. Here we use the archaeological and palaeoecological record to reassess the potential impacts of kurī on this ecosystem. We argue that far from being confined to villages, kurī could have had a significant widespread but relatively localised impact on New Zealand’s avian, reptilian and marine mammal (seals and sea lions) fauna as a novel predator of medium-sized species. In this way, kurī potentially amplified the already significant impacts of Polynesian colonists and their descendants on New Zealand’s ecosystem, prior to European arrival. As such, kurī should be included in models of human impact in addition to over-hunting, environmental modification and predation by kiore.


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Derek Gatherer ◽  
Daniel P. Depledge ◽  
Carol A. Hartley ◽  
Moriah L. Szpara ◽  
Paola K. Vaz ◽  
...  

Members of the family Herpesviridae have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125–241 kbp contain 70–170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species. Following primary infection, they are able to establish lifelong latent infection, during which there is limited viral gene expression. Severe disease is usually observed only in the foetus, the very young, the immunocompromised or following infection of an alternative host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herpesviridae, which is available at ictv.global/report/herpesviridae.


2021 ◽  
Author(s):  
Karen Greig ◽  
Nicolas J. Rawlence

The pre-human Aotearoa New Zealand ecosystem was dominated by avian and reptilian species. Prior to first human settlement by East Polynesian colonists, the top predators were two giant raptorial birds. Aside from humans themselves, colonisation also resulted in the introduction of two novel mammalian predators into this naive ecosystem, the kiore (Pacific rat) and kurī (Polynesian dog). While the ecological impacts of kiore are relatively well understood, those of kurī are difficult to assess, and as such kurī have frequently been disregarded as having any meaningful impact on New Zealand’s biodiversity. Here we use the archaeological and palaeoecological record to reassess the potential impacts of kurī on this ecosystem. We argue that far from being confined to villages, kurī could have had a significant widespread but relatively localised impact on New Zealand’s avian, reptilian and marine mammal (seals and sea lions) fauna as a novel predator of medium-sized species. In this way, kurī potentially amplified the already significant impacts of Polynesian colonists and their descendants on New Zealand’s ecosystem, prior to European arrival. As such, kurī should be included in models of human impact in addition to over-hunting, environmental modification and predation by kiore.


2021 ◽  
Vol 376 (1832) ◽  
pp. 20200109 ◽  
Author(s):  
Ceri Weber ◽  
Blanche Capel

With or without sex chromosomes, sex determination is a synthesis of many molecular events that drives a community of cells towards a coordinated tissue fate. In this review, we will consider how a sex determination pathway can be engaged and stabilized without an inherited genetic determinant. In many reptilian species, no sex chromosomes have been identified, yet a conserved network of gene expression is initiated. Recent studies propose that epigenetic regulation mediates the effects of temperature on these genes through dynamic post-transcriptional, post-translational and metabolic pathways. It is likely that there is no singular regulator of sex determination, but rather an accumulation of molecular events that shift the scales towards one fate over another until a threshold is reached sufficient to maintain and stabilize one pathway and repress the alternative pathway. Investigations into the mechanism underlying sex determination without sex chromosomes should focus on cellular processes that are frequently activated by multiple stimuli or can synthesize multiple inputs and drive a coordinated response. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


2021 ◽  
pp. 1-9
Author(s):  
Horacio Merchant-Larios ◽  
Verónica Díaz-Hernández ◽  
Diego Cortez

The discovery in mammals that fetal testes are required in order to develop the male phenotype inspired research efforts to elucidate the mechanisms underlying gonadal sex determination and differentiation in vertebrates. A pioneer work in 1966 that demonstrated the influence of incubation temperature on sexual phenotype in some reptilian species triggered great interest in the environment’s role as a modulator of plasticity in sex determination. Several chelonian species have been used as animal models to test hypotheses concerning the mechanisms involved in temperature-dependent sex determination (TSD). This brief review intends to outline the history of scientific efforts that corroborate our current understanding of the state-of-the-art in TSD using chelonian species as a reference.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1763
Author(s):  
Luigi Rosati ◽  
Sara Falvo ◽  
Gabriella Chieffi Chieffi Baccari ◽  
Alessandra Santillo ◽  
Maria Maddalena Di Di Fiore

Estrogens are important physiological regulators of testicular activity in vertebrates. Estrogen levels depend on the activity of P450 aromatase, the enzyme responsible for the irreversible conversion of testosterone into 17β-estradiol. Therefore, P450 aromatase is the key player in the aromatase–estrogen system. The present review offers a comparative overview of P450 aromatase activity in male gonads of amphibians, reptiles, and birds, with a particular emphasis on the functions of the aromatase–estrogen system in these organisms during their developmental and adult stages. The aromatase–estrogen system appears to be crucial for the sex differentiation of gonads in vertebrates. Administration of aromatase inhibitors prior to sexual differentiation of gonads results in the development of males rather than females. In adults, both aromatase and estrogen receptors are expressed in somatic cells, Leydig and Sertoli cells, as well as germ cells, with certain differences among different species. In seasonal breeding species, the aromatase–estrogen system serves as an “on/off” switch for spermatogenesis. In some amphibian and reptilian species, increased estrogen levels in post-reproductive testes are responsible for blocking spermatogenesis, whereas, in some species of birds, estrogens function synergistically with testosterone to promote spermatogenesis. Recent evidence indicates that the production of the aromatase enzyme in excessive amounts reduces the reproductive performance in avian species of commercial interest. The use of aromatase inhibitors to improve fertility has yielded suitable positive results. Therefore, it appears that the role of the aromatase–estrogen system in regulating the testicular activity differs not only among the different classes of vertebrates but also among different species within the same class.


Author(s):  
Kerstin Seitz ◽  
Anna Kübber-Heiss ◽  
Angelika Auer ◽  
Nora Dinhopl ◽  
Annika Posautz ◽  
...  

AbstractA novel poxvirus was discovered in Crocodilurus amazonicus (Teiidae) presenting with a debilitating skin disease. The generated first genome sequence of a reptilian poxvirus revealed the closest phylogenetic relationship to avipoxviruses, highlighting potential virus exchanges between avian and reptilian species.


Author(s):  
Hadj Aissa Benelkadi ◽  
Adel Mammeri ◽  
Mansour Amroun

This study is the first contribution to the evaluation of reptile diversity in different habitats of M’sila region, Algeria. We carried out 94 trips between 2016 and 2018 across three sites: Mergueb (six stations), L’mhazem (three stations) and Kaf Afoul (two stations), on average, accompanied by prospectors. Our aims were to make an inventory of reptilian species in this region, as well as to study their diversity, distribution, ecology and abundance. Altogether, we recorded 193 specimens belonging to 22 species: two turtles, one amphisbaenian, twelve lizards and seven snakes. Two species classified as Near Threatened by the IUCN were recorded: Uromastyx acanthinurus (Bell, 1825) and Daboia mauritanica (Duméril & Bibron, 1848). Statistical analysis revealed that the type of habitat directly influences the distribution of reptiles in the study area. Although this small area is rich in reptilian species, their abundance remains low and worrying


Sign in / Sign up

Export Citation Format

Share Document