morphological processing
Recently Published Documents


TOTAL DOCUMENTS

476
(FIVE YEARS 108)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 61 ◽  
pp. 101037
Author(s):  
Natalia Louleli ◽  
Jarmo A. Hämäläinen ◽  
Lea Nieminen ◽  
Tiina Parviainen ◽  
Paavo H.T. Leppänen

Author(s):  
Ghous Bakhsh Narejo ◽  
Ayesha Amir Siddiqi ◽  
Adnan Hashmi

This study presents a novel liver disease classification method by applying pattern recognition technique to automatically segmented liver from the images of computed tomographic (CT) scans. The methodology comprises of disease classification by the extraction of textural features from focal liver region bearing tumors. Two types of liver textures are investigated in this study for classification accuracy judgement. First, original liver texture is considered for feature extraction. Second, liver is used for feature extraction. The CT image dataset comprises 308 liver samples with 193 samples of malignant tumor and 115 samples of benign tumor. The entire liver tissue bearing tumor is segmented from the CT image automatically in the pre-processing stage using fuzzy transformation function and morphological processing. Four sets of textural feature matrices are applied to the liver for feature extraction. Gray level co-occurrence matrix (GLCM), standard deviation gray level co-occurrence matrix (SDGLCM), seven-moment matrix (7MM) and seven-moment gray level co-occurrence matrix (7MGLCM) are the combinational feature matrices applied to classify the liver as malignant or benign using support vector machines (SVMs). The best classification accuracy is achieved for original liver texture by 7MGLCM, which is 97% with AUC[Formula: see text]0.99 for training dataset and 97.8% with AUC[Formula: see text]1 for test dataset.


Author(s):  
Yu-Ying Chuang ◽  
R. Harald Baayen

Naive discriminative learning (NDL) and linear discriminative learning (LDL) are simple computational algorithms for lexical learning and lexical processing. Both NDL and LDL assume that learning is discriminative, driven by prediction error, and that it is this error that calibrates the association strength between input and output representations. Both words’ forms and their meanings are represented by numeric vectors, and mappings between forms and meanings are set up. For comprehension, form vectors predict meaning vectors. For production, meaning vectors map onto form vectors. These mappings can be learned incrementally, approximating how children learn the words of their language. Alternatively, optimal mappings representing the end state of learning can be estimated. The NDL and LDL algorithms are incorporated in a computational theory of the mental lexicon, the ‘discriminative lexicon’. The model shows good performance both with respect to production and comprehension accuracy, and for predicting aspects of lexical processing, including morphological processing, across a wide range of experiments. Since, mathematically, NDL and LDL implement multivariate multiple regression, the ‘discriminative lexicon’ provides a cognitively motivated statistical modeling approach to lexical processing.


2021 ◽  
Vol 7 ◽  
pp. e611
Author(s):  
Zengguo Sun ◽  
Guodong Zhao ◽  
Marcin Woźniak ◽  
Rafał Scherer ◽  
Robertas Damaševičius

The GF-3 satellite is China’s first self-developed active imaging C-band multi-polarization synthetic aperture radar (SAR) satellite with complete intellectual property rights, which is widely used in various fields. Among them, the detection and recognition of banklines of GF-3 SAR image has very important application value for map matching, ship navigation, water environment monitoring and other fields. However, due to the coherent imaging mechanism, the GF-3 SAR image has obvious speckle, which affects the interpretation of the image seriously. Based on the excellent multi-scale, directionality and the optimal sparsity of the shearlet, a bankline detection algorithm based on shearlet is proposed. Firstly, we use non-local means filter to preprocess GF-3 SAR image, so as to reduce the interference of speckle on bankline detection. Secondly, shearlet is used to detect the bankline of the image. Finally, morphological processing is used to refine the bankline and further eliminate the false bankline caused by the speckle, so as to obtain the ideal bankline detection results. Experimental results show that the proposed method can effectively overcome the interference of speckle, and can detect the bankline information of GF-3 SAR image completely and smoothly.


2021 ◽  
Vol 14 (2) ◽  
pp. 51-68
Author(s):  
Septa - Aryanika ◽  
Ratih Henisah ◽  
Dewi Kurniawati ◽  
Is Susanto

This study aims to determine the frequency and process of derivational and inflectional morphemes in Joko Widodo's speech at the Asian Pacific Economic Cooperation summit. The study used descriptive qualitative analysis methods. The data were analyzed using Fromkin's principle. The data analysis yielded 133 terms made up of derivational and inflectional morphemes. Derivational morphemes accounted for 50.37 percent of all occurrences in this study, while inflectional morphemes accounted for 49.63 percent. The researchers discovered several derivation processes that modify grammatical classes while remaining unchanged, such as noun form, adjective form, verb form, adverb form, adjective form, noun to noun, and adjective to adjective. In this study, five types of Inflectional morphemes were found: -s (plural and third-person singular), -ing (progressive), -ed (past tense), and -er (comparative).  Morphemes are an important feature of language so it is important for students to learn in school, especially for language learners. Morphological awareness, which we describe as a basic understanding of the morphemic structure of words, is required of the learner. Finally, the implications of this research will be an inspiration for further research in morphological processing, especially regarding derivational and inflectional morphemes. 


2021 ◽  
Vol 12 ◽  
Author(s):  
Christina Manouilidou ◽  
Michaela Nerantzini ◽  
Brianne M. Chiappetta ◽  
M. Marsel Mesulam ◽  
Cynthia K. Thompson

We addressed an understudied topic in the literature of language disorders, that is, processing of derivational morphology, a domain which requires integration of semantic and syntactic knowledge. Current psycholinguistic literature suggests that word processing involves morpheme recognition, which occurs immediately upon encountering a complex word. Subsequent processes take place in order to interpret the combination of stem and affix. We investigated the abilities of individuals with agrammatic (PPA-G) and logopenic (PPA-L) variants of primary progressive aphasia (PPA) and individuals with stroke-induced agrammatic aphasia (StrAg) to process pseudowords which violate either the syntactic (word class) rules (*reheavy) or the semantic compatibility (argument structure specifications of the base form) rules (*reswim). To this end, we quantified aspects of word knowledge and explored how the distinct deficits of the populations under investigation affect their performance. Thirty brain-damaged individuals and 10 healthy controls participated in a lexical decision task. We hypothesized that the two agrammatic groups (PPA-G and StrAg) would have difficulties detecting syntactic violations, while no difficulties were expected for PPA-L. Accuracy and Reaction Time (RT) patterns indicated: the PPA-L group made fewer errors but yielded slower RTs compared to the two agrammatic groups which did not differ from one another. Accuracy rates suggest that individuals with PPA-L distinguish *reheavy from *reswim, reflecting access to and differential processing of syntactic vs. semantic violations. In contrast, the two agrammatic groups do not distinguish between *reheavy and *reswim. The lack of difference stems from a particularly impaired performance in detecting syntactic violations, as they were equally unsuccessful at detecting *reheavy and *reswim. Reduced grammatical abilities assessed through language measures are a significant predictor for this performance, suggesting that the “hardware” to process syntactic information is impaired. Therefore, they can only judge violations semantically where both *reheavy and *reswim fail to pass as semantically ill-formed. This finding further suggests that impaired grammatical knowledge can affect word level processing as well. Results are in line with the psycholinguistic literature which postulates the existence of various stages in accessing complex pseudowords, highlighting the contribution of syntactic/grammatical knowledge. Further, it points to the worth of studying impaired language performance for informing normal language processes.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7734
Author(s):  
Wei Feng ◽  
Junhui Gao ◽  
Tong Qu ◽  
Shiqi Zhou ◽  
Daxing Zhao

Light field imaging plays an increasingly important role in the field of three-dimensional (3D) reconstruction because of its ability to quickly obtain four-dimensional information (angle and space) of the scene. In this paper, a 3D reconstruction method of light field based on phase similarity is proposed to increase the accuracy of depth estimation and the scope of applicability of epipolar plane image (EPI). The calibration method of the light field camera was used to obtain the relationship between disparity and depth, and the projector calibration was removed to make the experimental procedure more flexible. Then, the disparity estimation algorithm based on phase similarity was designed to effectively improve the reliability and accuracy of disparity calculation, in which the phase information was used instead of the structure tensor, and the morphological processing method was used to denoise and optimize the disparity map. Finally, 3D reconstruction of the light field was realized by combining disparity information with the calibrated relationship. The experimental results showed that the reconstruction standard deviation of the two objects was 0.3179 mm and 0.3865 mm compared with the ground truth of the measured objects, respectively. Compared with the traditional EPI method, our method can not only make EPI perform well in a single scene or blurred texture situations but also maintain good reconstruction accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7474
Author(s):  
Yongjiang Mao ◽  
Wenjuan Ren ◽  
Zhanpeng Yang

With the development of signal processing technology and the use of new radar systems, signal aliasing and electronic interference have occurred in space. The electromagnetic signals have become extremely complicated in their current applications in space, causing difficult problems in terms of accurately identifying radar-modulated signals in low signal-to-noise ratio (SNR) environments. To address this problem, in this paper, we propose an intelligent recognition method that combines time–frequency (T–F) analysis and a deep neural network to identify radar modulation signals. The T–F analysis of the complex Morlet wavelet transform (CMWT) method is used to extract the characteristics of signals and obtain the T–F images. Adaptive filtering and morphological processing are used in T–F image enhancement to reduce the interference of noise on signal characteristics. A deep neural network with the channel-separable ResNet (Sep-ResNet) is used to classify enhanced T–F images. The proposed method completes high-accuracy intelligent recognition of radar-modulated signals in a low-SNR environment. When the SNR is −10 dB, the probability of successful recognition (PSR) is 93.44%.


Sign in / Sign up

Export Citation Format

Share Document