subapical region
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 22 (7) ◽  
pp. 3563
Author(s):  
Nanda Boon ◽  
C. Henrique Alves ◽  
Aat A. Mulder ◽  
Charlotte A. Andriessen ◽  
Thilo M. Buck ◽  
...  

Mutations in the Crumbs homologue 1 (CRB1) gene cause inherited retinal dystrophies, such as early-onset retinitis pigmentosa and Leber congenital amaurosis. A Brown Norway rat strain was reported with a spontaneous insertion-deletion (indel) mutation in exon 6 of Crb1. It has been reported that these Crb1 mutant rats show vascular abnormalities associated with retinal telangiectasia and possess an early-onset retinal degenerative phenotype with outer limiting membrane breaks and focal loss of retinal lamination at 2 months of age. Here, we further characterized the morphological phenotype of new-born and adult Crb1 mutant rats in comparison with age-matched Brown Norway rats without a mutation in Crb1. A significantly decreased retinal function and visual acuity was observed in Crb1 mutant rats at 1 and 3 months of age, respectively. Moreover, in control rats, the subcellular localization of canonical CRB1 was observed at the subapical region in Müller glial cells while CRB2 was observed at the subapical region in both photoreceptors and Müller glial cells by immuno-electron microscopy. CRB1 localization was lost in the Crb1 mutant rats, whereas CRB2 was still observed. In addition, we determined the tropism of subretinal or intravitreally administered AAV5-, AAV9- or AAV6-variant ShH10Y445F vectors in new-born control and Crb1 mutant rat retinas. We showed that subretinal injection of AAV5 and AAV9 at postnatal days 5 (P5) or 8 (P8) predominantly infected the retinal pigment epithelium (RPE) and photoreceptor cells; while intravitreal injection of ShH10Y445F at P5 or P8 resulted in efficient infection of mainly Müller glial cells. Using knowledge of the subcellular localization of CRB1 and the ability of ShH10Y445F to infect Müller glial cells, canonical hCRB1 and hCRB2 AAV-mediated gene therapy were explored in new-born Crb1 mutant rats. Enhanced retinal function after gene therapy delivery in the Crb1 rat was not observed. No timely rescue of the retinal phenotype was observed using retinal function and visual acuity, suggesting the need for earlier onset of expression of recombinant hCRB proteins in Müller glial cells to rescue the severe retinal phenotype in Crb1 mutant rats.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaqi Sun ◽  
Mi Zhang ◽  
Xingyun Qi ◽  
Caitlin Doyle ◽  
Huanquan Zheng

Abstract In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.


2020 ◽  
Vol 113 (5) ◽  
pp. 697-706 ◽  
Author(s):  
Martin Tegelaar ◽  
George P. A. van der Lans ◽  
Han A. B. Wösten

AbstractIt was recently demonstrated that apical compartments of Aspergillus niger hyphae are self-sustaining in growth. This was shown by assessing the growth rate of individual hyphae before and after dissection of the second compartment. Using the same methodology, it is here demonstrated that single apical compartments of the septate fungi Penicillium chrysogenum and Schizophyllum commune as well as the 500-µm-apical region of the non-septate fungus Rhizopus stolonifer are also self-sustaining in growth. In contrast, single 2nd compartments (obtained by dissection of the first and third compartment) of the septate fungi or the region between 500 and 1000 µm from tips of R. stolonifer were severely impacted in their growth rate. In addition, it is shown that existing or newly formed branches originating from the 2nd compartments function as a backup system for hyphal growth when the apical part of the hypha of the three studied fungi is damaged. Together, it is concluded that the apical compartments/zones of the studied fungi are self-sustaining in growth. In contrast, the subapical region is not self-sustaining but functions as a backup once the apical zone is damaged. This back up system is relevant in nature because the apices of hyphae are the first to be exposed to (a)biotic stress conditions when entering an unexplored substrate.


2019 ◽  
Vol 20 (17) ◽  
pp. 4069 ◽  
Author(s):  
C. Henrique Alves ◽  
Nanda Boon ◽  
Aat A. Mulder ◽  
Abraham J. Koster ◽  
Carolina R. Jost ◽  
...  

Variations in the Crumbs homolog-1 (CRB1) gene are associated with a wide variety of autosomal recessive retinal dystrophies, including early onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). CRB1 belongs to the Crumbs family, which in mammals includes CRB2 and CRB3. Here, we studied the specific roles of CRB2 in rod photoreceptor cells and whether ablation of CRB2 in rods exacerbates the Crb1-disease. Therefore, we assessed the morphological, retinal, and visual functional consequences of specific ablation of CRB2 from rods with or without concomitant loss of CRB1. Our data demonstrated that loss of CRB2 in mature rods resulted in RP. The retina showed gliosis and disruption of the subapical region and adherens junctions at the outer limiting membrane. Rods were lost at the peripheral and central superior retina, while gross retinal lamination was preserved. Rod function as measured by electroretinography was impaired in adult mice. Additional loss of CRB1 exacerbated the retinal phenotype leading to an early reduction of the dark-adapted rod photoreceptor a-wave and reduced contrast sensitivity from 3-months-of-age, as measured by optokinetic tracking reflex (OKT) behavior testing. The data suggest that CRB2 present in rods is required to prevent photoreceptor degeneration and vision loss.


2016 ◽  
Vol 3 (11) ◽  
pp. 160776 ◽  
Author(s):  
Leonie Koch ◽  
Sabine Feicht ◽  
Rui Sun ◽  
Arnab Sen ◽  
Michael P. Krahn

In Drosophila , the adaptor protein Stardust is essential for the stabilization of the polarity determinant Crumbs in various epithelial tissues, including the embryonic epidermis, the follicular epithelium and photoreceptor cells of the compound eye. In turn, Stardust recruits another adaptor protein, PATJ, to the subapical region to support adherens junction formation and morphogenetic events. Moreover, Stardust binds to Lin-7, which is dispensable in epithelial cells but functions in postsynaptic vesicle fusion. Finally, Stardust has been reported to bind directly to PAR-6, thereby linking the Crumbs–Stardust–PATJ complex to the PAR-6/aPKC complex. PAR-6 and aPKC are also capable of directly binding Bazooka (the Drosophila homologue of PAR-3) to form the PAR/aPKC complex, which is essential for apical–basal polarity and cell–cell contact formation in most epithelia. However, little is known about the physiological relevance of these interactions in the embryonic epidermis of Drosophila in vivo . Thus, we performed a structure–function analysis of the annotated domains with GFP-tagged Stardust and evaluated the localization and function of the mutant proteins in epithelial cells of the embryonic epidermis. The data presented here confirm a crucial role of the PDZ domain in binding Crumbs and recruiting the protein to the subapical region. However, the isolated PDZ domain is not capable of being recruited to the cortex, and the SH3 domain is essential to support the binding to Crumbs. Notably, the conserved N-terminal regions (ECR1 and ECR2) are not crucial for epithelial polarity. Finally, the GUK domain plays an important role for the protein's function, which is not directly linked to Crumbs stabilization, and the L27N domain is essential for epithelial polarization independently of recruiting PATJ.


2014 ◽  
Vol 51 (3-4) ◽  
pp. 389-402 ◽  
Author(s):  
Jerzy Nakielski

The distribution of the relative elementary rate of growth (RERG) in apical domes of various shapes and patterns of displacement lines can be analytically examined. The geometry of these domes may be described by parabolas of <em>n</em>-th order, the variant of the distribution of linear growth rate should be established along any displacement line (e.g. along the axis) and then the RERG can be studied as the function depending on the position coordinates and the parameter n. Such investigations of several aplical domes of various shapes have been performed. The results confirm the occurrence of the minimum of relative, elementary growth rate (in volume) in the subapical region of the dome independently of the type of geometry (<em>n</em> parabola order).


2010 ◽  
Vol 9 (10) ◽  
pp. 1455-1465 ◽  
Author(s):  
Laura A. Jones ◽  
Peter E. Sudbery

ABSTRACT During the extreme polarized growth of fungal hyphae, secretory vesicles are thought to accumulate in a subapical region called the Spitzenkörper. The human fungal pathogen Candida albicans can grow in a budding yeast or hyphal form. When it grows as hyphae, Mlc1 accumulates in a subapical spot suggestive of a Spitzenkörper-like structure, while the polarisome components Spa2 and Bud6 localize to a surface crescent. Here we show that the vesicle-associated protein Sec4 also localizes to a spot, confirming that secretory vesicles accumulate in the putative C. albicans Spitzenkörper. In contrast, exocyst components localize to a surface crescent. Using a combination of fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) experiments and cytochalasin A to disrupt actin cables, we showed that Spitzenkörper-located proteins are highly dynamic. In contrast, exocyst and polarisome components are stably located at the cell surface. It is thought that in Saccharomyces cerevisiae exocyst components are transported to the cell surface on secretory vesicles along actin cables. If each vesicle carried its own complement of exocyst components, then it would be expected that exocyst components would be as dynamic as Sec4 and would have the same pattern of localization. This is not what we observe in C. albicans. We propose a model in which a stream of vesicles arrives at the tip and accumulates in the Spitzenkörper before onward delivery to the plasma membrane mediated by exocyst and polarisome components that are more stable residents of the cell surface.


2006 ◽  
Vol 15 (18) ◽  
pp. 2659-2672 ◽  
Author(s):  
Agnes G.S.H. van Rossum ◽  
Wendy M. Aartsen ◽  
Jan Meuleman ◽  
Jan Klooster ◽  
Anna Malysheva ◽  
...  

2003 ◽  
Vol 285 (6) ◽  
pp. F1050-F1059 ◽  
Author(s):  
Mark Wareing ◽  
Carole J. Ferguson ◽  
Mathieu Delannoy ◽  
Alan G. Cox ◽  
Raymond F. T. McMahon ◽  
...  

Divalent metal transporter1 (DMT1; also known as DCT1 or NRAMP2) is an important component of the cellular machinery responsible for dietary iron absorption in the duodenum. DMT1 is also highly expressed in the kidney where it has been suggested to play a role in urinary iron handling. In this study, we determined the effect on renal DMT1 expression of feeding an iron-restricted diet (50 mg/kg) or an iron-enriched diet (5 g/kg) for 4 wk and measured urinary and fecal iron excretion rates. Feeding the low-iron diet caused a reduction in serum iron concentration and fecal iron output rate with an increase in renal DMT1 expression. Feeding an iron-enriched diet had the converse effect. Therefore, DMT1 expression in the kidney is sensitive to dietary iron intake, and the level of expression is inversely related to the dietary iron content. Changes in DMT1 expression occurred intracellularly in the proximal tubule and in the apical membrane and subapical region of the distal convoluted tubule. Increased DMT1 expression was accompanied by a decrease in urinary iron excretion rate and vice versa when DMT1 expression was reduced. Together, these findings suggest that modulation of renal DMT1 expression may influence renal iron excretion rate.


2002 ◽  
Vol 53 (4) ◽  
pp. 317-325 ◽  
Author(s):  
Peter Verani? ◽  
Kristijan Jezernik

Sign in / Sign up

Export Citation Format

Share Document