bonding electron
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 2)

Organics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 19-35
Author(s):  
Luis R. Domingo ◽  
Mar Ríos Gutiérrez ◽  
Jorge Castellanos Soriano

The regioselectivity in non-polar [3+2] cycloaddition (32CA) reactions has been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-311G(d,p) level. To this end, the 32CA reactions of nine simplest three-atom-components (TACs) with 2-methylpropene were selected. The electronic structure of the reagents has been characterized through the Electron Localisation Function (ELF) and the Conceptual DFT. The energy profiles of the two regioisomeric reaction paths and ELF topology of the transition state structures are studied to understand the origin of the regioselectivity in these 32CA reactions. This MEDT study permits to conclude that the least electronegative X1 end atom of these TACs controls the asynchronicity in the C−X (X=C, N, O) single bond formation, and consequently, the regioselectivity. This behaviour is a consequence of the fact that the creation of the non-bonding electron density required for the formation of the new single bonds has a lower energy demand at the least electronegative X1 atom than at the Z3 one.


2020 ◽  
Author(s):  
Paul Merrithew

The purpose of this paper is to explore a model of the chemical bond which does not assume that the electrons of the chemical bonding electron pair can be unambiguously identified with either the left hand or right hand of the bonding atoms when their orbitals overlap to bond. In order to provide maximum flexibility in the selection of the electron’s orbitals, the orbitals have been represented as spatial arrays and the calculations performed numerically. This model of the chemical bond assumes that the identifiability of the bonding electrons is a function of 1-(overlap/(1+overlap)) where the overlap of the two bonding electron’s orbitals is calculated in the usual manner. The kinetic energy of the bonding electron pair and the energy required to meet the orthogonality requirements, mandated by the Pauli principle, are a function of overlap/(1+overlap). The model assumes that the bonding orbitals are straight-forward atomic orbitals or hybrids of these atomic orbitals. The results obtained by applying this simple approach to eleven di-atomics and seven common poly-atomics are quite good. The calculated bond lengths are generally within 0.005Å of the measured values and bond energies to within a few percent. Bond lengths for bonds to H are about 0.02 Å high. Except for H2, bond lengths are determined, independent of bond energy, at that point where overlap/(1+overlap) equals 0.5.


2020 ◽  
Author(s):  
Paul Merrithew

The purpose of this paper is to explore a model of the chemical bond which does not assume that the electrons of the chemical bonding electron pair can be unambiguously identified with either the left hand or right hand of the bonding atoms when their orbitals overlap to bond. In order to provide maximum flexibility in the selection of the electron’s orbitals, the orbitals have been represented as spatial arrays and the calculations performed numerically. This model of the chemical bond assumes that the identifiability of the bonding electrons is a function of 1-(overlap/(1+overlap)) where the overlap of the two bonding electron’s orbitals is calculated in the usual manner. The kinetic energy of the bonding electron pair and the energy required to meet the orthogonality requirements, mandated by the Pauli principle, are a function of overlap/(1+overlap). The model assumes that the bonding orbitals are straight-forward atomic orbitals or hybrids of these atomic orbitals. The results obtained by applying this simple approach to eleven di-atomics and seven common poly-atomics are quite good. The calculated bond lengths are generally within 0.005Å of the measured values and bond energies to within a few percent. Bond lengths for bonds to H are about 0.02 Å high. Except for H2, bond lengths are determined, independent of bond energy, at that point where overlap/(1+overlap) equals 0.5.


Author(s):  
Luis Domingo ◽  
Mar Ríos-Gutiérrez ◽  
Jorge Castellanos Soriano

The regioselectivity in non-polar [3+2] cycloaddition (32CA) reactions has been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-311G(d,p) level. To this end, the 32CA reactions of nine simplest three-atom-components (TACs) with 2-methylpropane were selected. The electronic structure of the reagents has been characterised through the Electron Localisation Function (ELF) and the Conceptual DFT. The energy profiles of the two regioisomeric reaction paths and ELF of the transition state structures are studied to understand the origin of the regioselectivity in these 32CA reactions. This MEDT study permits to conclude that the least electronegative ends X1 atom of these TACs controls the asynchronicity in the C-X (X = C,N,O) single bond formation, and consequently, the regioselectivity. This behaviour is a consequence of the fact that the creation of the non-bonding electron density required for the formation of the new CX single bonds has a lesser energetic cost at the least electronegative X1 atom than that at the Z3 one.


RSC Advances ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 5399-5411 ◽  
Author(s):  
N. Palaniappan ◽  
I. Cole ◽  
F. Caballero-Briones ◽  
S. Manickam ◽  
K. R. Justin Thomas ◽  
...  

C. roseus phytochemicals are physisorbed on the 111 Fe surface, and the oxygen non-bonding electron chemisorbed on the polarized state 111 Fe surface.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2250 ◽  
Author(s):  
Ibon Alkorta ◽  
Anthony Legon

Geometries, equilibrium dissociation energies (De), and intermolecular stretching, quadratic force constants (kσ) are presented for the complexes B⋯CO2, B⋯N2O, and B⋯CS2, where B is one of the following Lewis bases: CO, HCCH, H2S, HCN, H2O, PH3, and NH3. The geometries and force constants were calculated at the CCSD(T)/aug-cc-pVTZ level of theory, while generation of De employed the CCSD(T)/CBS complete basis-set extrapolation. The non-covalent, intermolecular bond in the B⋯CO2 complexes involves the interaction of the electrophilic region around the C atom of CO2 (as revealed by the molecular electrostatic surface potential (MESP) of CO2) with non-bonding or π-bonding electron pairs of B. The conclusions for the B⋯N2O series are similar, but with small geometrical distortions that can be rationalized in terms of secondary interactions. The B⋯CS2 series exhibits a different type of geometry that can be interpreted in terms of the interaction of the electrophilic region near one of the S atoms and centered on the C∞ axis of CS2 (as revealed by the MESP) with the n-pairs or π-pairs of B. The tetrel, pnictogen, and chalcogen bonds so established in B⋯CO2, B⋯N2O, and B⋯CS2, respectively, are rationalized in terms of some simple, electrostatically based rules previously enunciated for hydrogen- and halogen-bonded complexes, B⋯HX and B⋯XY. It is also shown that the dissociation energy De is directly proportional to the force constant kσ, with a constant of proportionality identical within experimental error to that found previously for many B⋯HX and B⋯XY complexes.


2017 ◽  
Vol 53 (19) ◽  
pp. 2818-2821 ◽  
Author(s):  
Bing-Hua Lei ◽  
Zhihua Yang ◽  
Shilie Pan

Contrivable deep-UV coherent light from an originally non-phase-matchable crystal was achieved by optimizing bonding electron distribution in anionic groups.


Sign in / Sign up

Export Citation Format

Share Document