attention weight
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
Gajanan Tudavekar ◽  
Santosh S. Saraf ◽  
Sanjay R. Patil

Video inpainting aims to complete in a visually pleasing way the missing regions in video frames. Video inpainting is an exciting task due to the variety of motions across different frames. The existing methods usually use attention models to inpaint videos by seeking the damaged content from other frames. Nevertheless, these methods suffer due to irregular attention weight from spatio-temporal dimensions, thus giving rise to artifacts in the inpainted video. To overcome the above problem, Spatio-Temporal Inference Transformer Network (STITN) has been proposed. The STITN aligns the frames to be inpainted and concurrently inpaints all the frames, and a spatio-temporal adversarial loss function improves the STITN. Our method performs considerably better than the existing deep learning approaches in quantitative and qualitative evaluation.


2021 ◽  
Author(s):  
Jennifer Santoso ◽  
Takeshi Yamada ◽  
Shoji Makino ◽  
Kenkichi Ishizuka ◽  
Takekatsu Hiramura

2021 ◽  
Author(s):  
Yunan Wu ◽  
Arne Schmidt ◽  
Enrique Hernandez Sanchez ◽  
Rafael Molina ◽  
Aggelos K. Katsaggelos

Intracranial hemorrhage (ICH) is a life-threatening emergency with high rates of mortality and morbidity. Rapid and accurate detection of ICH is crucial for patients to get a timely treatment. In order to achieve the automatic diagnosis of ICH, most deep learning models rely on huge amounts of slice labels for training. Unfortunately, the manual annotation of CT slices by radiologists is time-consuming and costly. To diagnose ICH, in this work, we propose to use an attention-based multiple instance learning (Att-MIL) approach implemented through the combination of an attention-based convolutional neural network (Att-CNN) and a variational Gaussian process for multiple instance learning (VGPMIL). Only labels at scan-level are necessary for training. Our method (a) trains the model using scan labels and assigns each slice with an attention weight, which can be used to provide slice-level predictions, and (b) uses the VGPMIL model based on low-dimensional features extracted by the Att-CNN to obtain improved predictions both at slice and scan levels. To analyze the performance of the proposed approach, our model has been trained on 1150 scans from an RSNA dataset and evaluated on 490 scans from an external CQ500 dataset. Our method outperforms other methods using the same scan-level training and is able to achieve comparable or even better results than other methods relying on slice-level annotations.


2020 ◽  
Vol 17 (3) ◽  
pp. 849-865
Author(s):  
Zhongqin Bi ◽  
Shuming Dou ◽  
Zhe Liu ◽  
Yongbin Li

Neural network methods have been trained to satisfactorily learn user/product representations from textual reviews. A representation can be considered as a multiaspect attention weight vector. However, in several existing methods, it is assumed that the user representation remains unchanged even when the user interacts with products having diverse characteristics, which leads to inaccurate recommendations. To overcome this limitation, this paper proposes a novel model to capture the varying attention of a user for different products by using a multilayer attention framework. First, two individual hierarchical attention networks are used to encode the users and products to learn the user preferences and product characteristics from review texts. Then, we design an attention network to reflect the adaptive change in the user preferences for each aspect of the targeted product in terms of the rating and review. The results of experiments performed on three public datasets demonstrate that the proposed model notably outperforms the other state-of-the-art baselines, thereby validating the effectiveness of the proposed approach.


Author(s):  
Bowen Yu ◽  
Zhenyu Zhang ◽  
Tingwen Liu ◽  
Bin Wang ◽  
Sujian Li ◽  
...  

Relation extraction studies the issue of predicting semantic relations between pairs of entities in sentences. Attention mechanisms are often used in this task to alleviate the inner-sentence noise by performing soft selections of words independently. Based on the observation that information pertinent to relations is usually contained within segments (continuous words in a sentence), it is possible to make use of this phenomenon for better extraction. In this paper, we aim to incorporate such segment information into neural relation extractor. Our approach views the attention mechanism as linear-chain conditional random fields over a set of latent variables whose edges encode the desired structure, and regards attention weight as the marginal distribution of each word being selected as a part of the relational expression. Experimental results show that our method can attend to continuous relational expressions without explicit annotations, and achieve the state-of-the-art performance on the large-scale TACRED dataset.


Author(s):  
Yuquan Le ◽  
Zhi-Jie Wang ◽  
Zhe Quan ◽  
Jiawei He ◽  
Bin Yao

Sentence similarity modeling lies at the core of many natural language processing applications, and thus has received much attention. Owing to the success of word embeddings, recently, popular neural network methods have achieved sentence embedding, obtaining attractive performance. Nevertheless, most of them focused on learning semantic information and modeling it as a continuous vector, while the syntactic information of sentences has not been fully exploited. On the other hand, prior works have shown the benefits of structured trees that include syntactic information, while few methods in this branch utilized the advantages of word embeddings and another powerful technique ? attention weight mechanism. This paper makes the first attempt to absorb their advantages by merging these techniques in a unified structure, dubbed as ACV-tree. Meanwhile, this paper develops a new tree kernel, known as ACVT kernel, that is tailored for sentence similarity measure based on the proposed structure. The experimental results, based on 19 widely-used datasets, demonstrate that our model is effective and competitive, compared against state-of-the-art models.


Sign in / Sign up

Export Citation Format

Share Document