The face is seen as a key component of the human body, and humans utilise it to identify one another. Face detection in video refers to the process of detecting a person's face from a video sequence, while face tracking refers to the process of tracking the person's face throughout the video. Face detection and tracking has become a widely researched issue due to applications such as video surveillance systems and identifying criminal activity. However, working with videos is tough due to problems such as bad illumination, low resolution, and atypical posture, among others. It is critical to produce a fair analysis of various tracking and detection strategies in order to fulfil the goal of video tracking and detection. Closed-circuit television (CCTV) technology had a significant impact on how crimes were investigated and solved. The material used to review crime scenes was CCTV footage. CCTV systems, on the other hand, just offer footage and do not have the ability to analyse it. In this research, we propose a system that can be integrated with the CCTV footage or any other video input like webcam to detect, recognise, and track a person of interest. Our system will follow people as they move through a space and will be able to detect and recognise human faces. It enables video analytics, allowing existing cameras to be combined with a system that will recognise individuals and track their activities over time. It may be used for remote surveillance and can be integrated into video analytics software and CCTV security solutions as a component. It may be used on college campuses, in offices, and in shopping malls, among other places.