assembly technique
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 62)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Mohd Nazri Md Noor ◽  
Nabil Batita ◽  
Mohamed Gaby ◽  
Yoann Riou ◽  
Samuel Roselier ◽  
...  

Abstract Enhancing gas productivity is linked to multistage stimulation (MSS). Choosing a cemented over uncemented solution is driven by factors such as operational efficiency, drilling practices, and isolation techniques. Swellable and mechanical packers have been used widely. A new packer type, an expandable steel packer, has been qualified recently, the expandable steel packer combines the strengths of mechanical and swellable packers and will provide an option for openhole completions. The 4.5-in. expandable steel packer design was optimized to meet most demanding applications with the following characteristics: reduced running outside diameter (OD) to 5.6 in., premium assembly technique by crimping, double sleeve pressure self-compensation, and use of nickel alloys for sour environment. After the design of the packer was completed, the 4.5-in. expandable steel packer was qualified according to the API Spec 19OH (API 2018) standard protocol at 15,000 psi with thermal variation between 320°F and 68°F. The packer was tested in a casing with inside diameter (ID) of 6.5 in. The test casing had an ID of 6.5 in. whereas nominal hole size ranges from 5.875 in. to 6.125 in. It was chosen to simulate a washout and considering the calculated maximum expansion ratio for the steel to verify the 15,000-psi pressure rating capability. The test casing was built with a heat exchanger, high-pressure pump, and pressure and temperature sensors. The packer was expanded inside the dummy well with all the measuring instruments in place. Expansion pressure signatures were observed as predicted. The analysis of the packer setting pressure curves showed expansion initiation and full casing ID contact. The liquid differential pressure test from each side of the packer proved the internal pressure compensation performed as expected. No leak was observed during the pressure steps of 15.000 psi held for 15 minutes while cycling the temperature from 320°F to 68°F and back to 320°F. The expandable steel packer utilizes a unique double-sleeve system for self-pressure compensation during ball-drop stimulation operations. The packer expandable sleeve is protected during deployment by the end fittings. Expandable steel packers exhibit robustness during running in hole, enable setting on demand, have a high expansion ratio, require no de-rating vs. hole size, and have low sensitivity to thermal variations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3280
Author(s):  
Tianbao Zhao ◽  
Ruyi Yang ◽  
Zhi Yang

Graphene/poly-(sodium-4-styrene sulfonate)(PSS)/poly-(allylamine hydrochloride) (PAH) composite is a frequently adopted system for fabricating polyelectrolyte multilayer films. Swelling is the bottleneck limiting its applications, and its effects on the conductivity is still controversial. Herein, we report successful swelling of a graphene/PSS/PAH composite in a vapor atmosphere, and the relation with the mass fraction of water is uncovered. The composite was prepared via a layer-by-layer assembly technique and systematically characterized. The results indicated that the average thickness for each bilayer was about 0.95 nm. The hardness and modulus were 2.5 ± 0.2 and 68 ± 5 GPa, respectively, and both were independent of thickness. The sheet resistance decreased slightly with the prolongation of immersion time, but was distinct from that of the water mass fraction. It reduced from 2.44 × 105 to 2.34 × 105 ohm/sq, and the change accelerated as the water mass fraction rose, especially when it was larger than 5%. This could be attributing to the lubrication effect of the water molecules, which sped up the migration of charged groups in the polyelectrolytes. Moreover, molecular dynamics simulations confirmed that a microphase separation occurred when the fraction reached an extreme value owing to the dominated interaction between PSS and PAH. These results provide support for the structural stability of this composite material and its applications in devices.


2021 ◽  
Vol 2 (4) ◽  
pp. 956-975
Author(s):  
Marcel S. Prem ◽  
Michael Klanner ◽  
Katrin Ellermann

In order to analyze the dynamics of a structural problem accurately, a precise model of the structure, including an appropriate material description, is required. An important step within the modeling process is the correct determination of the model input parameters, e.g., loading conditions or material parameters. An accurate description of the damping characteristics is a complicated task, since many different effects have to be considered. An efficient approach to model the material damping is the introduction of fractional derivatives in the constitutive relations of the material, since only a small number of parameters is required to represent the real damping behavior. In this paper, a novel method to determine the damping parameters of viscoelastic materials described by the so-called fractional Zener material model is proposed. The damping parameters are estimated by matching the Frequency Response Functions (FRF) of a virtual model, describing a beam-like structure, with experimental vibration data. Since this process is generally time-consuming, a surrogate modeling technique, named Polynomial Chaos Expansion (PCE), is combined with a semi-analytical computational technique, called the Numerical Assembly Technique (NAT), to reduce the computational cost. The presented approach is applied to an artificial material with well defined parameters to show the accuracy and efficiency of the method. Additionally, vibration measurements are used to estimate the damping parameters of an aluminium rotor with low material damping, which can also be described by the fractional damping model.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3743
Author(s):  
Jaganathan Balaji ◽  
Tae Hwan Oh

In this work, biopolymer based sol-gel was synthesized by doping 3-mercaptopropanoic acid (MPA) with chitosan and a hybrid of 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS). Prepared MPA/hybrid-doped chitosan was applied toa copper (Cu) metal surface by the self-assembly technique to protect the Cu metal from corrosion in a 3.5% NaCl solution. The structure, mechanism and morphology of the modified electrodes were examined using Fourier transform infra-red (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The decrease in surface roughness for Hy/chitosan/MPA-coated Cu indicates the formation of a dense layer on Cu metal confirmed by AFM. The corrosion protection evaluation of sol-gel coated electrodes was analyzed using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies (PDS) in a 3.5% NaCl medium. The MPA/hybrid-doped chitosan sol-gel coated Cu metal showed the greatest resistance to corrosionthanother sol-gel modified electrodes. The MPA-doped-chitosan/Hy sol-gel coating protected the Cu metal by an anodic dissolution process and improved its corrosion protection to 99.9%.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2867
Author(s):  
Myoung Jun Park ◽  
Grace M. Nisola ◽  
Dong Han Seo ◽  
Chen Wang ◽  
Sherub Phuntsho ◽  
...  

Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration.


Kinesik ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 216-225
Author(s):  
Ayu Berlian Triulandari

A media can be an intermediary that supports the effectiveness of a message. Messages can be proclaimed to be effective if the communicant gives feedback as expected by the communicator. This research attempts to define the effectiveness of the #Budayabeberes massage in the poster for educating the clean living behavior of KFC consumers in Palu City. The research uses a questionnaire as a data assembly technique. The research method adopted is a quantitative method with a survey research type to describe or exemplify the topic whose findings can be generalized in this research. The subjects in this research amounted to 80 people who were selected using the purposive sampling technique with the #budayabeberes message in the poster for educating consumers to live clean life as an object of the research. The findings confirmed that the #Budayabeberes massage in the poster was effective in persuading consumers to conduct a clean-up after eating. This can be distinguished based on the theory of message effectiveness according to Wilbur Schramm which contains 4 indicators, i.e. attracting attention, symbols that are understood, constructing needs and how to retrieve. Cultivated data recapitulation of respondent’s answers with a total score of 257 so that when discerned based on the ideal score and the answer area in the rating scale, the #BudayaBeberes message in the poster is in the effective category.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 361
Author(s):  
Francesca Merli ◽  
Elisa Belloni ◽  
Cinzia Buratti

Multiple high quality wood waste from a window manufacturer is identified and collected. Eco-sustainable panels, with promising acoustic and thermal insulating performance, were then fabricated. The available wood is of different tree species (pine, oak, and mahogany) and size (pieces of wood, mixed coarse chips, and mixed fine chips). Moreover, scraps of olive tree pruning from local areas were collected for reuse. The aim of the research is to assembly panels (300 × 300 mm2) both with different techniques (hand-made and hot-pressed) and type of adhesive (vinyl and flour glues) and to evaluate their thermal, acoustic, and environmental performance. All the panels present thermal and acoustic performance comparable with the similar ones available in the literature or with commercial solutions. The thermal conductivity varies in the 0.071 to 0.084 W/mK range at an average temperature of 10 °C, depending on the tree species, the assembly technique, and regardless of the type of adhesive used. Oak wood panels are characterized by both better sound absorption (α peak value of 0.9, similar to pine pressed sample with flour glue) and insulation (transmission loss up to 11 dB at 1700 Hz) properties. However, their added value is the low environmental impact assessed through life cycle analysis in compliance with ISO 14040, especially for panels assembled with natural glue.


Sign in / Sign up

Export Citation Format

Share Document