Tropical forests have long been accepted for their productivity and ecosystem services on account of their high diversity and stand structural attributes. In spite of their significance, tropical forests, and especially those of Asia, remain understudied. Until recently, most forest inventories in Asia have concentrated on trees 10 cm in diameter. Floristic composition, plant species diversity, above-ground biomass, basal area, and diversity were investigated across different life forms and two-diameter classes in a large-scale 10-ha plot, in the undisturbed tropical seasonal rain forest of Southern Western Ghats, Kerala, India. The regeneration pattern of the study area was examined by evaluating fisher's alpha and IVI (Important Value Index) across three layers of vegetation (seedling, sapling, and tree). Within the plot, we recorded 25,390 woody plant species ≥1 cm dbh from 45 families, 91 genera, and 106 species. Plant density was 2539 woody individuals per hectare, with a basal area of 47.72 m2/ha and above-ground biomass of 421.77 Mg/ha. By basal area, density, and frequency, the Rubiaceae, Sapotaceae, and Malvaceae families were the most important. Small-diameter trees (1 cm ≤ dbh ≤10 cm) were found to be 78 percent of the total tree population, 20.2 percent of the basal area, and 1.4 percent of the aboveground biomass. They also possessed 6 percent more diversity at the family level, 10% more diversity at the genus level, and 12% more diversity at the species level than woody individuals under 10 cm dbh. Woody individuals of treelets life form and small-diameter classes were much more diverse and dense than the other groups, indicating that results based only on larger canopy trees and larger diameter class maybe not be an appropriate representation of the diversity status of a particular tropical forest type. The lower density of individuals in the initial girth class indicates the vulnerability of the forest system to anthropogenic, natural disturbance and a changing climate. Reduce the minimum diameter limit down to 1 cm, in contrast to 10 cm limit used in most of the evergreen forest inventories, revealed a high density and diversity in the lower stories.