seasonal change
Recently Published Documents


TOTAL DOCUMENTS

735
(FIVE YEARS 79)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
Subhash Chand ◽  
Barbara Bollard

Seagrass meadows are undergoing significant decline locally and globally from human and climatic impacts. Seagrass decline also impacts seagrass-dependent macrofauna benthic activity, interrupts their vital linkage with adjacent habitats, and creates broader degradation through the ecosystem. Seagrass variability (gain and loss) is a driver of marine species diversity. Still, our understanding of macrofauna benthic activity distribution and their response to seagrass variability from remotely sensed drone imagery is limited. Hence, it is critical to develop fine-scale seasonal change detection techniques appropriate to the scale of variability that will apply to dynamic marine environments. Therefore, this research tested the performance of the VIS and VIS+NIR sensors from proximal low altitude remotely piloted aircraft system (RPAS) to detect fine-scale seasonal seagrass variability using spectral indices and a supervised machine learning classification technique. Furthermore, this research also attempted to identify and quantify macrofauna benthic activity from their feeding burrows and their response to seagrass variability. The results from VIS (visible spectrum) and VIS+NIR (visible and near-infrared spectrum) sensors produced a 90–98% classification accuracy. This accuracy established that the spectral indices were fundamental in this study to identify and classify seagrass density. The other important finding revealed that seagrass-associated macrofauna benthic activity showed increased or decreased abundance and distribution with seasonal seagrass variability from drone high spatial resolution orthomosaics. These results are important for seagrass conservation because managers can quickly detect fine-scale seasonal changes and take mitigation actions before the decline of this keystone species affects the entire ecosystem. Moreover, proximal low-altitude, remotely sensed time-series seasonal data provided valuable contributions for documenting spatial ecological seasonal change in this dynamic marine environment.


Author(s):  
Ifeanyi Uchegbulam ◽  
Simon G. Danby ◽  
Roger Lewis ◽  
Matt J. Carré ◽  
Raman Maiti

Human Ecology ◽  
2021 ◽  
Author(s):  
Karim-Aly Kassam ◽  
Morgan Ruelle ◽  
Isabell Haag ◽  
Umed Bulbulshoev ◽  
Daler Kaziev ◽  
...  

AbstractSeasonal rounds are deliberative articulations of a community’s sociocultural relations with their ecological system. The process of visualizing seasonal rounds informs transdisciplinary research. We present a methodological approach for communities of enquiry to engage communities of practice through context-specific sociocultural and ecological relations driven by seasonal change. We first discuss historical précis of the concept of seasonal rounds that we apply to assess the spatial and temporal communal migrations and then describe current international research among Indigenous and rural communities in North America and Central Asia by the creation of a common vocabulary through mutual respect for multiple ways of knowing, validation of co-generated knowledge, and insights into seasonal change. By investigating the relationship between specific biophysical indicators and livelihoods of local communities, we demonstrate that seasonal rounds are an inclusive and participatory methodology that brings together diverse Indigenous and rural voices to anticipate anthropogenic climate change.


Sign in / Sign up

Export Citation Format

Share Document