metal extraction
Recently Published Documents


TOTAL DOCUMENTS

545
(FIVE YEARS 169)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Vol 176 ◽  
pp. 114259
Author(s):  
Louis M. Hennequin ◽  
Sze-yin Tan ◽  
Elaine Jensen ◽  
Paul Fennell ◽  
Jason P. Hallett
Keyword(s):  

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Pavel A. Yudaev ◽  
Evgeniy M. Chistyakov

This review addresses research and development on the use of ionic liquids as extractants and diluents in the solvent extraction of metals. Primary attention is given to the efficiency and selectivity of metal extraction from industrial wastewater with ionic liquids composed of various cations and anions. The review covers literature sources published in the period of 2010–2021. The bibliography includes 98 references dedicated to research on the extraction and separation of lanthanides (17 sources), actinides (5 sources), heavy metals (35 sources), noble metals, including the platinum group (16 sources), and some other metals.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012024
Author(s):  
A Y Fedorov ◽  
A V Levina

Abstract Traditionally, the method of liquid extraction is used to extract metals from aqueous. This work is devoted to the combination of perspective alternative for hazardous solvents (aqueous two-phase systems based on water-soluble polymers) and the novel deep eutectic solvents in the non-ferrous metals extraction processes. In this work, the synthesis of deep eutectic solvent based on a water-soluble polymer (PPG-425) and tetrabutylammonium bromide (TBAB) by stirring for 10 minutes at 80° C has been shown. The obtained results showed not only the possibility of using DES in the metal extraction process, but the selectivity to the Fe(III) and Zn(III), the distribution coefficients were 71.64 and 25.17 respectively. The metal concentrations were determined spectrophotometrically using 4-(2-pyridylazo)resorcinol. This work shows the perspectives of using DESs in the metal extraction processes.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012011
Author(s):  
I V Zinov’eva

Abstract Today, metal extraction from e-waste is beneficial from both an environmental and economic point of view. Natural resources of metals, especially platinum group metals, are limited. At the same time, the amount of waste containing many valuable elements continues to grow. In this work, we studied the extraction of Pt (IV) from hydrochloric acid solutions using polypropylene glycol 425 (PPG 425). In the course of the experimental work, the dependence of the platinum extraction degree on the influence of hydrochloric acid concentration and medium pH in the polypropylene glycol 425 - sodium chloride - water system have been established. The maximum recovery (distribution coefficient > 3,5) has been achieved in the presence of 2 M HCl in an aqueous two-phase system (ATPS), which allows the use of the proposed system for the extraction of platinum from leaching solutions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bastian Blume ◽  
Michael Witting ◽  
Philippe Schmitt-Kopplin ◽  
Bernhard Michalke

Parkinson´s disease progression is linked to iron redox status homeostasis via reactive oxygen species (ROS) formation, and lipids are the primary targets of ROS. The determination of iron redox status in vivo is challenging and requires specific extraction methods, which are so far tedious and very time-consuming. We demonstrated a novel, faster, and less laborious extraction method using the chelator ethylene glycol l-bis(β-aminoethyl ether)-N,N,N′,N′-tetra acetic acid (EGTA) as a stabilizing agent and synthetic quartz beads for homogenization under an argon atmosphere. Additionally, we combined the metal extraction with a well-established lipid extraction protocol using methyl-tert-butyl ether (MTBE) to avoid the problems of lipid precipitation in frozen samples and to determine lipid profiles and metal species from the same batch. The nonextractable matrix, such as the debris, is removed by centrifugation and digested to determine the total metal content of the sample as well. Lipid profiling using RP-LC–MS demonstrated high accordance of the modified extraction method to the reference method, and the organic solvent does not affect the iron redox status equilibrium. Furthermore, rigorous testing demonstrated the stability of the iron redox status equilibrium during the extraction process, secured by complexation, inert atmosphere, fast preparation, and immediately deep frozen extracts.


Author(s):  
Gabriela-Geanina Vasile ◽  
Anda-Gabriela Tenea ◽  
Cristina Dinu ◽  
Ana Maria Mihaela Iordache ◽  
Stefania Gheorghe ◽  
...  

This study presents the behavior of white mustard seedlings Sinapis alba grown for three months in laboratory polluted soil containing As, Cd, Ni and Pb. Four different experiments were performed in which As was combined with the other three toxic metals in different combinations (As, AsCd, AsCdNi, AsCdNiPb), keeping the same concentrations of As and Cd in all tests and following the national soil quality regulations. The effects of these metals were monitored by the analytical control of metal concentrations in soil and plants, bioavailability tests of mobile metal fractions using three different extracting solutions (DTPA + TEA + CaCl2-DTPA, DTPA + CaCl2-CAT, and CH3COONH4 + EDTA-EDTA) and calculation of bioaccumulation and translocation factors. Additionally, micro, and macro-nutrients both in soil and plant (root, stem, leaves, flowers and seeds) were analyzed in order to evaluate the impact of toxic metals on plant nutrient metabolism. Metals were significantly and differently accumulated in the plant tissues, especially under AsCdNi and AsCdNiPb treatments. Significant differences (p < 0.05) in the concentration of both As and Cd were highlighted. Translocation could be influenced by the presence of other toxic metals, such as Cd, but also of essential metals, through the competition and antagonism processes existing in plant tissues. Significantly, more Cd and Ni levels were detected in leaves and flowers. Cd was also detected in seeds above the WHO limit, but the results are not statistically significant (p > 0.05). The extraction of metallic nutrients (Zn, Cu, Mn, Ni, Mg, K, Fe, Ca, Cr) in the plant was not influenced by the presence of toxic metal combinations, on the contrary, their translocation was more efficient in the aerial parts of the plants. No phytotoxic effects were recorded during the exposure period. The most efficient methods of metal extraction from soil were for As-CAT; Cd-all methods; Pb and Ni-DTPA. The Pearson correlations (r) between applied extraction methods and metal detection in plants showed positive correlations for all toxic metals as follows: As-CAT > DTPA > EDTA, Cd-DTPA > CAT > EDTA, Ni-EDTA = DTPA > CAT, Pb-EDTA = DTPA = CAT). The results revealed that Sinapis alba has a good ability to accumulate the most bioavailable metals Cd and Ni, to stabilize As at the root level and to block Pb in soil.


2021 ◽  
Vol 5 (1) ◽  
pp. 39
Author(s):  
Halimeh Askari Sabzkoohi ◽  
Georgios Kolliopoulos

The development of a truly circular economy necessitates the recovery and recycling of resources from secondary streams. In this work, we studied the extraction of metals from printed circuit boards (PCBs) using choline chloride: ethylene glycol deep eutectic solvents: Cu, Ni, Zn, and Sn were selectively extracted from the PCBs, with >75% extraction after 72 h for Cu, Ni, and Sn, and circa. 45% extraction for Zn. This solvometallurgical approach promises to minimize the use of water and acid/base reagents in processing. The results show a considerable ability to compete with current methods of metal extraction and therefore generate a strong potential to attain the goal of a sustainable circular economy via zero-waste green urban mining.


2021 ◽  
pp. 145-196
Author(s):  
Michael L. Free
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1303
Author(s):  
Agnieszka Pawlowska ◽  
Zygmunt Sadowski ◽  
Katarzyna Winiarska

The adsorption of biosurfactants and polysaccharides changes the surface properties of solid particles, which is important for controlling the release of arsenic compounds from the solid phase and preventing undesirable bioleaching. Microbial leaching and scorodite adhesion experiments, including pure and modified mineral material, were conducted in a glass column with a mineral bed (0.8–1.2 mm particle size) to test how rhamnolipids (Rh) and lipopolysaccharides (LPS) affect surface properties of mineral waste from Złoty Stok (Poland) and secondary bio-extraction products (scorodite). Adsorption tests were conducted for both solid materials. The adsorption of Rh and LPS on the solids was shown to modify its surface charge, affecting bioleaching. The highest bio-extraction efficiency was achieved for arsenic waste with adsorbed rhamnolipids, while the lowest, for the LPS-modified mineral. Under acidic circumstances (pH~2.5), the strongly negative zeta potential of arsenic-bearing waste in the presence of Rh creates conditions for bacteria adhesion, leading to the intensification of metal extraction. The presence of a biopolymer on the As waste surface decreases leaching efficiency and favours the scorodite’s adhesion.


2021 ◽  
pp. 105-134
Author(s):  
Peter C. Little

This chapter introduces the ways in which e-pyropolitics are embodied by exploring the illness narratives and bodily distress experiences of several copper burners. The author draws on ethnographic narratives to explore how Agbogbloshie workers narrate, understand, and refer to their own bodily distress to make sense of the toxic exposures and environmental health risks they face. In addition to exploring how toxic embodiment and experience break down or reconfigure demarcations of body and environment, the author highlights the ways in which toxicity and corporality become the site of laudable environmental health risk mitigation efforts that ironically fail to transform or reduce toxic corporality in an enduring postcolonial context. In this way, the author explores how a solutions-based intervention in Agbogbloshie overlooks the complexity and diversity of eco-corporeal relations in a tech metal extraction zone where bodies, toxins, and economies intersect.


Sign in / Sign up

Export Citation Format

Share Document