Objective: Radiation detectors are key components that ensure the accuracy and performances of dosimetry equipment. The study is aimed to compare the mean entrance surface air kerma (ESAK) between a DCT-10mm ionization chamber (IC) and MTS-N (LiF: Mg, Ti) chips when both detectors are exposed to ≤ 5mGy with a 10 by 10 field size, with an X-ray source and to determine the accuracy of the Thermoluminescent (TL) chips. Also, the dose will be compared to similar studies.
Materials and Methods: A functional, Digital Radiography (DR) X-ray System was used. A DCT-10mm ionization chamber (IC) and an XR Multidetector was positioned at a Source to Image Distance (SID) of 100cm on polystyrene, about 20cm thick. An X-ray spectrum generated at a Practical Peak Voltage (PPV) of 60-107kV with Half Value Layer (HVL) of 2.4-4.3mmAl and filtration > 3mmAl was used. The same setup was used for the MTS-N chips.
Results: The mean doses for 1-5 mGy with the MTS-N chips were 1.07±0.07, 1.60±0.13, 2.23±0.11, 2.58±0.07 and 3.45±0.10 mGy respectively, with accuracies of 7, 20, 26, 36 and 31%. Dose accuracy at 1and 2mGy was within 25% respectively. Dose accuracies at 3, 4 and 5mGy was within >25%. The correction factor for 1-5mGy was 0.94, 1.25, 1.35, 1.55 and 1.45 respectively.
Conclusion: Validation of the MTS-N chips with the reference ionization chamber to this study was within 36%. The Radiation and Nuclear Safety Authority (STUK) recommends that ESAK be within 25% for entrance surface dose. ESAK accuracy mostly increased with dose as observed in this study.