Volume 11B: Honoring Symposium for Professor Carlos Guedes Soares on Marine Technology and Ocean Engineering
Latest Publications


TOTAL DOCUMENTS

63
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851333

Author(s):  
Sheng Xu ◽  
C. Guedes Soares ◽  
Ângelo P. Teixeira

A detail procedure to study mooring line strength reliability is presented. A fully coupled analysis is carried out to get the mooring tensions of a deep water semi-submersible floating systems operated in 100 year wave condition in South China Sea. The ACER method is applied to predict the 3h extreme mooring tension, and the results are validated by global maximum method. The hydrodynamic sampling points are generated by Latin Hypercube Sampling technique. The 3h extreme mooring tension is calculated by the ACER method with 10 minutes fully coupled dynamic simulation for each sampling point. The Kriging meta model method is trained to predict 3h mooring extreme tension under the effects of random hydrodynamic drag coefficients. A reliability analysis is carried out by implementing Monte Carlo simulation with the random hydrodynamic drag coefficients and mooring breaking strength considered.


Author(s):  
Torgeir Moan

Based on relevant accident experiences with oil and gas platforms, a brief overview of structural integrity management of offshore structures is given; including an account of adequate design criteria, inspection, repair and maintenance as well as quality assurance and control of the engineering processes. The focus is on developing research based design standards for Accidental Collapse Limit States to ensure robustness or damage tolerance in view damage caused by accidental loads due to operational errors and to some extent abnormal structural damage due to fabrication errors. Moreover, it is suggested to provide robustness in cases where the structural performance is sensitive to uncertain parameters. The use of risk assessment to aid decisions in lieu of uncertainties affecting the performance of novel and existing offshore structures, is briefly addressed.


Author(s):  
Jialun Liu ◽  
Robert Hekkenberg ◽  
Bingqian Zhao

Ships that equipped with flapped rudders have better manoeuvring performance than ships fitted with traditional spade rudders. Moreover, this advantage is achieved without significantly affecting the ship’s resistance during normal cruising. Flapped rudders are, therefore, favourable for ships that require high manoeuvring performance and sail long distance. Nowadays, there is a trend of using twin flapped rudders on newly built inland vessels in the Yangtze River. To properly design these ships and analyse their manoeuvring performance, the hydrodynamic characteristics of the flapped rudders are required. In this paper, a RANS study is performed to analyse the impacts of the three main properties of a flapped rudder on its hydrodynamic coefficients. The target properties are the rudder profile, the flap-linkage ratio (the flapped angle relative to the rudder chord line divided by the applied rudder angle), and the flap-area ratio (the sectional area of the flap divided by the total sectional area). The RANS simulations are carried out with commercial meshing tool ANSYS Meshing and CFD solver ANSYS Fluent.


Author(s):  
B. L. Josefson ◽  
J. Alm ◽  
J. M. J. McDill

The fatigue life of welded joints can be improved by modifying the weld toe geometry or by inducing beneficial compressive residual stresses in the weld. However, in the second case, the induced compressive residual stresses may relax when the welded joint is subjected to cyclic loading containing high tensile or compressive stress peaks. The stability of induced compressive stresses is investigated for a longitudinal gusset made of a S355 steel. Two methods are considered; either carrying out a high frequency mechanical impact (HFMI) treatment after welding or alternatively using low transformation temperature (LTT) electrodes during welding. The specimen is then subjected to a cyclic loading case with one cycle with a tensile peak (with magnitude reaching the local yield stress level) followed by cycles with constant amplitude. A sequential finite element analysis (FEA) is performed thereby preserving the history of the elasto-plastic behavior. Both the welding process and the HFMI treatment are simulated using simplified approaches, i.e., the welding process is simulated by applying a simplified thermal cycle while the HFMI treatment is simulated by a quasi-static contact analysis. It is shown that using the simplified approaches to modelling both the welding process and HFMI treatment gives results that correlate qualitatively well with the experimental and FEA data available in the literature. Thus, for comparison purposes, simplified models may be sufficient. Both the use of the HFMI treatment and LTT electrodes give approximately the same compressive stress at the weld toe but the extent of the compressive stress zone is deeper for HFMI case. During cyclic loading it is shown that the beneficial effect of both methods will be substantially reduced if the test specimen is subjected to unexpected peak loads. For the chosen load sequence, with the same maximum local stress at the weld toe, the differences in stress curves of the HFMI-treated specimen and that with LTT electrodes remain. While the LTT electrode gives the lowest (compressive) stress right at the well toe, it is shown that the overall effect of the HFMI treatment is more beneficial.


Author(s):  
Ruiqi Ma ◽  
Guoqing Feng ◽  
Huilong Ren ◽  
Peng Fu ◽  
Shuang Wu ◽  
...  

Hull monitoring system with Fiber Bragg Grating (FBG) sensors increasingly receives people’s attentions. However, for the ship hull monitoring, the deformation of hull girder changes a lot as is subjected to a huge temperature variation. Therefore, the compensation method with only FBG temperature self-correction is not suitable for the hull monitoring sensors because no material thermal expansion effects are reasonably included. In this paper, the new compensation method of hull monitoring FBG sensor based on the sensor theory with both FBG temperature self-correction and steel thermal expansion effects correction is studied. The coupled compensation method suitable for hull monitoring sensor is obtained by theoretical derivation. As the comparison, the coupled compensation experiment was carried out. The results show that the relative error under the temperature compensation method is large in the case of drastic strain and temperature changes, and the correction results of the tested method will be closer to the true level.


Author(s):  
Lokukaluge P. Perera

A general framework to support the navigation side of autonomous ships is discussed in this study. That consists of various maritime technologies to achieve the required level of ocean autonomy. Decision-making processes in autonomous vessels will play an important role under such ocean autonomy, therefore the same technologies should consist of adequate system intelligence. Each onboard application in autonomous vessels may require localized decision-making modules, therefore that will introduce a distributed intelligence type strategy. Hence, future ships will be agent-based systems with distributed intelligence throughout vessels. The main core of this agent should consist of deep learning type technology that has presented promising results in other transportation systems, i.e. self-driving cars. Deep learning can capture helmsman behavior, therefore that type system intelligence can be used to navigate autonomous vessels. Furthermore, an additional decision support layer should also be developed to facilitate deep learning type technology including situation awareness and collision avoidance. Ship collision avoidance is regulated by the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) under open sea areas. Hence, a general overview of the COLREGs and its implementation challenges, i.e. regulatory failures and violations, under autonomous ships are also discussed with the possible solutions as the main contribution of this study. Furthermore, additional considerations, i.e. performance standards with the applicable limits of liability, terms, expectations and conditions, towards evaluating ship behavior as an agent-based system on collision avoidance situations are also illustrated in this study.


Author(s):  
Maro Ćorak ◽  
Joško Parunov

The aim of the paper is the assessment of structural reliability of oil tanker which may be damaged in collision accident in the Adriatic Sea and exposed to combined, horizontal and vertical bending moments. Damage size is assumed based on the direct numerical simulation of the ship-ship collision. This is justified for some specific sea environments, as the Adriatic Sea, where ship sailing routes and representative ship types involved in accidents are known, so possible collision scenarios may be reasonably predicted. Residual bending moment capacity under combined bending moment is calculated using regression equations developed based on non-linear finite element analysis. Still water vertical bending moments are obtained by damage stability analysis. Vertical and horizontal wave bending moments are determined by short-term response analysis of damaged ship in the Adriatic Sea, using transfer functions obtained by 3D panel hydrodynamic method. Limit state function is defined using interaction equation for damaged ship exposed to combined bending moments. Safety indices are calculated by FORM for different collision scenarios that are generated by MC simulations. Such approach enables to determine the safety indices for the most frequent damages and also to reveal the most critical situations resulting in the lowest safety indices.


Author(s):  
Peng Wang ◽  
Xiao Wu ◽  
Wenyue Lu ◽  
Xinliang Tian ◽  
Xin Li

Floatover method has been proven a competitive installation technology in last thirty years. However, floatover installation is subject to a variety of technical challenges. Apart from weather restrictions, motions and position of the topside and deck transport vessel (DTV) should be strictly controlled during the entire installation operations. Therefore, a field monitoring system is essential to guarantee the installation safety. In this paper, a comprehensive introduction to the monitoring system developed by Shanghai Jiao Tong University is presented. The subsystems, including environment monitoring system, motions and position monitoring system, deck support units (DSUs) separating monitoring system, closed-circuit-television (CCTV) monitoring system as well as the integrated monitoring system (IMS), are proposed. Besides, the pre-installation surveys are also presented.


Author(s):  
Yordan Garbatov ◽  
C. Guedes Soares

The work presented here analyses the structural corrosion degradation of two sets of corrosion depth measurements collected with a one-decade difference. The corrosion degradation process is associated to a first order system, subjected to a sudden disturbance, where a step function is used as an input to define the solution of the differential equation of this system leads to the exponential corrosion degradation model as developed earlier. Corrosion margins of redundant ship structures with serious consequences of failure are derived and several conclusions related to the new trend in the ageing structures are presented and discussed. Partial safety factors with respect to the corrosion environment and corrosion margins are developed that can be used in the design, avoiding a complex probabilistic analysis.


Author(s):  
Yan Dong ◽  
Yordan Garbatov ◽  
C. Guedes Soares

The objective of this work is to perform a fatigue reliability analysis of a load-carrying fillet welded cruciform joint based on the local strain approach. The effective notch stresses of the weld root and toe of the cruciform joint, where the fatigue cracks are usually initiated, are estimated by the finite element method and the fatigue notch factors of these two locations as a function of the weld leg and slit lengths are explicitly represented by response surface models. Within the context of the local strain approach, a critical fatigue notch factor that can exactly trigger fatigue failure is proposed. The statistical descriptors of the critical fatigue notch factor are determined by using the Monte Carlo simulation method, in which the nominal stress range, material properties and fatigue damage at failure are treated as random variables. The limit state functions of the weld root and toe are formulated based on the response surface models and critical fatigue notch factors. The first order reliability method is applied to evaluate the reliability against the fatigue damage. Finally, the cruciform joint system, composed by the two fatigue-prone locations, is evaluated as a series system of components.


Sign in / Sign up

Export Citation Format

Share Document