Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides
Latest Publications


TOTAL DOCUMENTS

6
(FIVE YEARS 6)

H-INDEX

0
(FIVE YEARS 0)

Published By Intechopen

9781789854510, 9781789854527

Author(s):  
Jaroslav Šesták

Nonstoichiometric oxides form a new chapter in tailored materials. Founding and construction of thermodynamic functions related to solid (geologic, metallurgic) materials is traced showing interactions between Czech Professor F. Wald and Russians R.S. Kurnakov and D.S. Korzhinskiĭ and further developed by Czech P. Holba in the initial phase definition and related characterization of partially open systems. A gradual increase in thermodynamic concepts related to solid-state description is investigated in more detail. For the associated thermodynamic definition of the mobile component, the previously formulated hyperfree energy function, which was recently applied to several systems, was used. As a measure of the material disposition for the absorption of the free component, an innovative term of plutability is proposed, which allows the introduction of various forecaster variables such as temperature, pressure, and activity. Examples of practical application are examples of high-temperature superconducting materials, where the Czech school of thermodynamics is emphasized.


Author(s):  
Paras Dubey ◽  
Netram Kaurav

This chapter gives a general overview of synthesis and recent development of nickel oxide as a nonstoichiometric compound. We establish the synthesis chemistry of nickel oxide as a nonstoichiometric material, and hence successively introduce definitions and classifications of nonstoichiometric compounds as well as their point defects. The samples of nonstoichiometric nickel oxide are synthesized by thermal decomposition method. The nonstoichiometry of samples was then studied chemically by iodometric titration, and the results are further corroborated by excess oxygen obtained from the thermo-gravimetric analysis (TGA). X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques are used to analyze structural phase of nonstoichiometric nickel oxide. The change in oxidation state of nickel was studied by X-ray photoelectron spectroscopy (XPS) analysis. The shift in antiferromagnetic ordering and transition temperature due to nonstoichiometry is studied by magnetic and specific heat capacity analysis.


Author(s):  
Florentina Maxim ◽  
Alina Botea-Petcu ◽  
Florina Teodorescu ◽  
Ludwig J. Gauckler ◽  
Speranta Tanasescu

The mixed conducting perovskite-type oxides BaxSr1-xCo1-yFeyO3-δ (BSCF) are intensively studied as potential high-performance solid oxide fuel cell cathode materials. The effect of different compositional variables and oxygen stoichiometry on the structure and thermodynamic stability of the BaxSr1-xCo1-yFeyO3-δ (x = 0.2, 0.4, 0.5, 0.6, 0.8; y = 0.2, 0.4, 0.6, 0.8, 1) perovskite-type compositions were investigated by solid electrolyte electrochemical cells method and scanning electron microscopy (SEM). The thermodynamic quantities represented by the partial molar free energies, enthalpies and entropies of oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressures of oxygen were obtained in the temperature range of 823–1273 K. The in situ change of oxygen stoichiometry and the determination of thermodynamic parameters of the new oxygen-deficient BSCF compositions were studied via coulometric titration technique coupled with electromotive force (EMF) measurements. The effect of A- and B-site dopants concentration correlated to the variation of oxygen stoichiometry on the thermodynamic stability and morphology of the BSCF samples was evidenced.


Author(s):  
Alexander Tkach ◽  
Paula M. Vilarinho

Among the lead-free perovskite-structure materials, strontium titanate (SrTiO3—ST) and potassium tantalate (KTaO3—KT), pure or modified, are of particular importance. They are both quantum paraelectrics with high dielectric permittivity and low losses that can find application in tunable microwave devices due to a dependence of the permittivity on the electric field. Factors as Sr/Ti and K/Ta ratio in ST and KT ceramics, respectively, can alter the defect chemistry of these materials and affect the microstructure. Therefore, if properly understood, cation stoichiometry variation may be intentionally used to tailor the electrical response of electroceramics. The scientific and technological importance of the stoichiometry variation in ST and KT ceramics is reviewed and compared in this chapter. The differences in crystallographic phase assemblage, grain size, and dielectric properties are described in detail. Although sharing crystal chemical similarities, the effect of the stoichiometry is markedly different. Even if the variation of Sr/Ti and K/Ta ratios did not change the quantum-paraelectric nature of ST and KT, Sr excess impedes the grain growth and decreases the dielectric permittivity in ST ceramics, while K excess promotes the grain growth and increases the dielectric permittivity in KT ceramics.


Author(s):  
Som Datta Kaushik ◽  
Anil Kumar Singh

In this chapter we introduce stoichiometry and nonstoichiometry from crystal structure point of view along with some examples. We also discussed about the importance of nonstoichiometry in the application oriented research work and their use in the technological applications. We further discuss the ways to identify stoichiometry through various methods. We then introduce neutron diffraction and briefly describe how neutrons and X-ray interacts with matter and the difference in their interaction with matter. We then focus upon its (neutron) usability to identify nonstoichiometry by using some examples available in the literatures. High-temperature superconductivity-based research has seen the importance of neutron diffraction and scattering in identifying the structural modification which leads to superconductivity in the compounds.


Sign in / Sign up

Export Citation Format

Share Document