Civil and Environmental Engineering
Latest Publications


TOTAL DOCUMENTS

40
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By De Gruyter Open Sp. Z O.O.

1336-5835, 1336-5835

2015 ◽  
Vol 11 (2) ◽  
pp. 110-114
Author(s):  
Maria T. Pop

Abstract In order to reduce the time period needed for structures design it is strongly recommended to use nomographical diagrams. The base for formation and updating the nomographical diagrams, stands on the charts presented by different technical publications. The updated charts use the same algorithm and calculation elements as the former diagrams in accordance to the latest prescriptions and European standards. The result consists in a chart, having the same properties, similar with the nomogragraphical diagrams already in us. As a general conclusion, even in our days, the nomographical diagrams are very easy to use. Taking into consideration the value of the moment it’s easy to find out the necessary reinforcement area and vice-verse, having the reinforcement area you can find out the capable moment. It still remains a useful opportunity for pre-sizing and designs the reinforced concrete sections.


2015 ◽  
Vol 11 (2) ◽  
pp. 115-120
Author(s):  
Juraj Šrámek

Abstract The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E*) measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ε6). The test equipment and software is used to evaluate fatigue and deformation characteristics.


2015 ◽  
Vol 11 (2) ◽  
pp. 121-135
Author(s):  
Miloš Kekeliak ◽  
Jozef Gocál ◽  
Josef Vičan

Abstract In this paper, numerical modelling of the traditional carpentry connection with mortise and tenon is presented. Numerical modelling is focused on its stiffness and the results are compared to results of experimental tests carried out by (Feio, 2005) [6]. To consider soft behaviour of wood in carpentry connections, which are related to its surface roughness and geometrical accuracy of the contact surfaces, the characteristics of the normal contact stiffness, determined experimentally, are introduced in the numerical model. Parametric study by means of numerical modelling with regard to the sensitivity of connection stiffness to contact stiffness is presented. Based on the study results, in conclusion there are presented relevant differences between the results of numerical modelling and experimental tests (Feio, 2005) [6].


2015 ◽  
Vol 11 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Roman Bulko ◽  
Marián Drusa ◽  
Jozef Vlček ◽  
Martin Mečár

Abstract Currently, can be seen a new trend in engineering geological survey, where laboratory analysis are replaced by in situ testing methods, which are more efficient and cost effective, and time saving too. A regular engineering geological survey cannot be provided by simple core drillings, macroscopic description (sometimes very subjective), and then geotechnical parameters are established based on indicative standardized values or archive values from previous geotechnical standards. The engineering geological survey is trustworthy if is composed of laboratory and in-situ testing supplemented by indirect methods of testing, [1]. The prevalence of rotary core drilling for obtaining laboratory soil samples from various depths (every 1 to 3 m), cannot be a more enhanced as continues evaluation of strata and properties e.g. by CPT Piezocone (every 1 cm). Core drillings survey generally uses small amounts of soil samples, but this is resulting to a lower representation of the subsoil and underestimation of parameters. Higher amounts of soil samples make laboratory testing time-consuming and results from this testing can be influenced by the storage and processing of the soil samples. Preference for geotechnical surveys with in situ testing is therefore a more suitable option. In situ testing using static and dynamic penetration tests can be used as a supplement or as a replacement for the (traditional) methods of surveying.


2015 ◽  
Vol 11 (2) ◽  
pp. 103-109
Author(s):  
Jelena M. Djoković ◽  
Ružica R. Nikolić ◽  
Ján Bujňák

Abstract In this paper it is analyzed the welded T-joint exposed to the axial tensile force and the bending moment, for determining the impact of the weld geometry on the fracture mechanics parameters. The stress intensity factor was calculated analytically, based on the concept of the linear elastic fracture mechanics (LEFM), by application of the Mathematica® programming routine. The presence of the weld was taken into account through the corresponding correction factors. The results show that increase of the size of the triangular welds leads to decrease of the stress intensity factor, while the SIF increases with increase of the welds’ width. The ratio of the two welded plates’ thicknesses shows that plate thicknesses do not exhibit significant influence on the stress intensity factor behavior.


2015 ◽  
Vol 11 (2) ◽  
pp. 84-94 ◽  
Author(s):  
Peter Dobeš

Abstract In the introduction of the paper there is characterized a way of monitoring the moisture in the railway substructure in the experimental stand, which is a part of the experimental workplace of the Department of Railway Engineering and Track Management. A substantial part of the paper is devoted to the calibration of TDR test probe for selected rock materials as a basic prerequisite for the determination of the actual moisture in the body of the railway substructure and subgrade.


2015 ◽  
Vol 11 (2) ◽  
pp. 142-146 ◽  
Author(s):  
Linda Makovická Osvaldová ◽  
Stanislava Gašpercová

Abstract In this paper, we address the historical comparison methods with current methods for the assessment of flammability characteristics for materials an especially for wood, wood components and wooden buildings. Nowadays in European Union brings harmonization in evaluated of standards into each European country and try to make one concept of evaluated the flammability properties. In each European country to the one standard level which will be used by evaluation of materials regarding flammability. In our article we focused mainly on improving the evaluation methods in terms of flammability characteristics of using materials at building industry. In the article we present examples of different assessment methods at their own test methods in terms of fire prevention. On the base of old compared of materials by STN, BS and DIN methods for testing materials on fire and new methods of evaluating the flammability properties regarding EU standards before and after starting the flash over.


2015 ◽  
Vol 11 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Peter Krušinský ◽  
Eva Capková ◽  
Jozef Gocál ◽  
Michaela Holešová

Abstract The truss of the Roman Catholic Church of the holy Kozma and Damian was managed to date to the year 1470/71d. It represents one of the few well-preserved medieval structures in this region. The form of roofs is a typical for rafter collar-beam construction without stiffening frame. The geometrical analysis of the main roofs trusses is based on logical dependencies and a description of a process in the truss design, pointing to evaluative relations resulting especially from the Pythagorean Geometry. Consequently, a spatial numerical model of the roof structure was developed in order to perform a static analysis of the roof structure in accordance with present standards. Due to the fact that during the diagnostic survey there were noted some missing structural elements in the roof construction (angle braces), in further analysis, an attention was paid to the importance of the selected structural elements and their role in the construction of the truss itself.


2015 ◽  
Vol 11 (2) ◽  
pp. 95-102
Author(s):  
Ľudovít Krajči ◽  
Ján Jerga

Abstract The environment of the steel reinforcement has a significant impact on the durability and service life of a concrete structure. It is not only the presence of aggressive substances from the environment, but also the own composition of concrete mixture. The use of new types of cements, additives and admixtures must be preceded by verification, if they themselves shall not initiate the corrosion. There is a need for closer physical expression of the parameters of the potentiodynamic diagrams allowing reliable assessment of the influence of the surrounding environment on electrochemical behaviour of reinforcement. The analysis of zero retardation limits of potentiodynamic curves is presented.


2015 ◽  
Vol 11 (2) ◽  
pp. 147-151
Author(s):  
Ján Kortiš

Abstract The productivity of the work of engineers in the design of building structures by applying the rules of technical standards [1] has been increasing by using different software products for recent years. The software products offer engineers new possibilities to design different structures. However, there are problems especially for design of structures with similar static schemes as it is needed to follow the same work-steps. This can be more effective if the steps are done automatically by using a programming language for leading the processes that are done by software. The design process of timber structure which is done in the environment of Scia Engineer software is presented in the article. XML Programming Language is used for automatization of the design and the XML code is modified in the Excel environment by using VBA Programming language [2], [3].


Sign in / Sign up

Export Citation Format

Share Document