measurable functions
Recently Published Documents


TOTAL DOCUMENTS

529
(FIVE YEARS 61)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Shyamal Debnath ◽  
Bijoy Das

Complex uncertain variables are measurable functions from an uncertainty space to the set of complex numbers and are used to model complex uncertain quantities. The main purpose of this paper is to introduce rough convergence of complex uncertain sequences and study some convergence concepts namely rough convergence in measure, rough convergence in mean, rough convergence in distribution of complex uncertain sequences. Lastly some relationship between them have been investigated.


Author(s):  
Ugo Dal Lago ◽  
Naohiko Hoshino

Abstract We give two geometry of interaction models for a typed λ-calculus with recursion endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The models are based on the category of measurable spaces and partial measurable functions, and the category of measurable spaces and s-finite kernels, respectively. The former is proved adequate with respect to both a distribution-based and a sampling-based operational semantics, while the latter is proved adequate with respect to a sampling-based operational semantics.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nonna Dzhusoeva ◽  
Ruslan Kulaev ◽  
Marat Pliev

In this article, we introduce and study a new class of operators defined on a Cartesian product of ideal spaces of measurable functions. We use the general approach of the theory of vector lattices. We say that an operator T : E × F ⟶ W defined on a Cartesian product of vector lattices E and F and taking values in a vector lattice W is orthogonally biadditive if all partial operators T y : E ⟶ W and T x : F ⟶ W are orthogonally additive. In the first part of the article, we prove that, under some mild conditions, a vector space of all regular orthogonally biadditive operators O B A r E , F ; W is a Dedekind complete vector lattice. We show that the set of all horizontally-to-order continuous regular orthogonally biadditive operators is a projection band in O B A r E , F ; W . In the last section of the paper, we investigate orthogonally biadditive operators on a Cartesian product of ideal spaces of measurable functions. We show that an integral Uryson operator which depends on two functional variables is orthogonally biadditive and obtain a criterion of the regularity of an orthogonally biadditive Uryson operator.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-10
Author(s):  
A. Assari ◽  
◽  
M. Rahimi ◽  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
pp. 432-453
Author(s):  
Qi Han

Abstract In this work, we study the existence of a positive solution to an elliptic equation involving the fractional Laplacian (−Δ) s in ℝ n , for n ≥ 2, such as (0.1) ( − Δ ) s u + E ( x ) u + V ( x ) u q − 1 = K ( x ) f ( u ) + u 2 s ⋆ − 1 . $$(-\Delta)^{s} u+E(x) u+V(x) u^{q-1}=K(x) f(u)+u^{2_{s}^{\star}-1}.$$ Here, s ∈ (0, 1), q ∈ 2 , 2 s ⋆ $q \in\left[2,2_{s}^{\star}\right)$ with 2 s ⋆ := 2 n n − 2 s $2_{s}^{\star}:=\frac{2 n}{n-2 s}$ being the fractional critical Sobolev exponent, E(x), K(x), V(x) > 0 : ℝ n → ℝ are measurable functions which satisfy joint “vanishing at infinity” conditions in a measure-theoretic sense, and f (u) is a continuous function on ℝ of quasi-critical, super-q-linear growth with f (u) ≥ 0 if u ≥ 0. Besides, we study the existence of multiple positive solutions to an elliptic equation in ℝ n such as (0.2) ( − Δ ) s u + E ( x ) u + V ( x ) u q − 1 = λ K ( x ) u r − 1 , $$(-\Delta)^{s} u+E(x) u+V(x) u^{q-1}=\lambda K(x) u^{r-1},$$ where 2 < r < q < ∞(both possibly (super-)critical), E(x), K(x), V(x) > 0 : ℝ n → ℝ are measurable functions satisfying joint integrability conditions, and λ > 0 is a parameter. To study (0.1)-(0.2), we first describe a family of general fractional Sobolev-Slobodeckij spaces Ms ;q,p (ℝ n ) as well as their associated compact embedding results.


Author(s):  
Nadeem Rao ◽  
Pradeep Malik ◽  
Mamta Rani

In the present manuscript, we present a new sequence of operators, i:e:, -Bernstein-Schurer-Kantorovich operators depending on two parameters 2 [0; 1] and > 0 foe one and two variables to approximate measurable functions on [0:1+q]; q > 0. Next, we give basic results and discuss the rapidity of convergence and order of approximation for univariate and bivariate of these sequences in their respective sections . Further, Graphical and numerical analysis are presented. Moreover, local and global approximation properties are discussed in terms of rst and second order modulus of smoothness, Peetre’s K-functional and weight functions for these sequences in dierent spaces of functions.


Sign in / Sign up

Export Citation Format

Share Document