В статье анализируется ряд публикаций на эту тему, а также обобщаются результаты дискуссий на конференции «Знания, онтологии, теории» (Новосибирск, 8-12 ноября 2021 г.) и Круглом столе в ИСЭМ СО РАН «Искусственный интеллект в энергетике» (22 декабря 2021 г.). Рассматриваются понятия: сильный и слабый ИИ, объяснимый ИИ, доверенный ИИ. Анализируются причины «бума» вокруг машинного обучения и его недостатки. Сравниваются облачные технологии и технологии граничных вычислений. Определяется понятие «умный» цифровой двойник, интегрирующий математические, информационные, онтологические модели и технологии ИИ. Рассматриваются этические риски ИИ и перспективы применения методов и технологий ИИ в энергетике.
The article analyzes a number of publications on this topic, and also summarizes the results of discussions at the conference "Knowledge, Ontology, Theory" (Novosibirsk, November 8-12, 2021) and the Round Table at the ISEM SB RAS "Artificial Intelligence in Energy" (December 22 2021). The concepts are considered: artificial general intelligence (AGI), strong and narrow AI (NAI), explainable AI, trustworthy AI. The reasons for the "hype" around machine learning and its disadvantages are analyzed. Compares cloud and edge computing technologies. The concept of "smart" digital twin, which integrates mathematical, informational, ontological models and AI technologies, is defined. The ethical risks of AI and the prospects for the application of AI methods and technologies in the energy sector are considered.