Nitinol has growing applications in aerospace industries, MEMS, and bio-medical industries due to its unique properties of pseudo-elasticity, bio-compatibility, and shape-memory effect. Behaviour of NiTi alloy can be changed by altering the composition, modifying the porosity, and applying external thermal and mechanical treatment. In this chapter, porous NiTi alloy with powder metallurgy is fabricated by varying the composition of polypropylene as an organic binder from 0% to 15%, and Young's modulus and porosity of porous alloy has been evaluated. The effect of process parameters—compaction pressure, sintering temperature, and sintering time—are evaluated using Taguchi L16 orthogonal array. These particles initially act as a binder but with the increase of temperature, the organic particles evaporate and create pores. With the increase of organic particle percentage, the porosity increases while Young's modulus decreases. SEM was used to characterize the fabricated porous NiTi alloy.