scholarly journals Generic Construction of the Standard Model Gauge Group and Matter Representations in F‐theory

2020 ◽  
Vol 68 (5) ◽  
pp. 2000009
Author(s):  
Washington Taylor ◽  
Andrew P. Turner
2021 ◽  
Vol 61 ◽  
pp. 1-16
Author(s):  
Daniele Corradetti ◽  

Recent papers contributed revitalizing the study of the exceptional Jordan algebra $\mathfrak{h}_{3}(\mathbb{O})$ in its relations with the true Standard Model gauge group $\mathrm{G}_{SM}$. The absence of complex representations of $\mathrm{F}_{4}$ does not allow $\Aut\left(\mathfrak{h}_{3}(\mathbb{O})\right)$ to be a candidate for any Grand Unified Theories, but the automorphisms of the complexification of this algebra, i.e., $\mathfrak{h}_{3}^{\mathbb{C}}(\mathbb{O})$, are isomorphic to the compact form of $\mathrm{E}_{6}$ and similar constructions lead to the gauge group of the minimal left-right symmetric extension of the Standard Model.


2005 ◽  
Vol 20 (18) ◽  
pp. 4241-4257 ◽  
Author(s):  
B. ANANTHANARAYAN ◽  
P. N. PANDITA

We consider supersymmetric SO(10) grand unification where the unified gauge group can break to the Standard Model gauge group through different chains. The breaking of SO(10) necessarily involves the reduction of the rank, and consequent generation of nonuniversal supersymmetry breaking scalar mass terms. We derive squark and slepton mass relations, taking into account these nonuniversal contributions to the sfermion masses, which can help distinguish between the different chains through which the SO(10) gauge group breaks to the Standard Model gauge group. We then study some implications of these nonuniversal supersymmetry breaking scalar masses for the low energy phenomenology.


2017 ◽  
Vol 32 (19) ◽  
pp. 1730018 ◽  
Author(s):  
Bartosz Fornal

A simple model is constructed based on the gauge symmetry [Formula: see text], with only the leptons transforming nontrivially under [Formula: see text]. The extended symmetry is broken down to the Standard Model gauge group at TeV-scale energies. We show that this model provides a mechanism for baryogenesis via leptogenesis in which the lepton number asymmetry is generated by [Formula: see text] instantons. The theory also contains a dark matter candidate — the [Formula: see text] partner of the right-handed neutrino.


Author(s):  
Daniele Corradetti

Abstract Recent papers of Todorov and Dubois-Violette[4] and Krasnov[7] contributed revitalizing the study of the exceptional Jordan algebra h3(O) in its relations with the true Standard Model gauge group GSM. The absence of complex representations of F4 does not allow Aut (h3 (O)) to be a candidate for any Grand Unified Theories, but the group of automorphisms of the complexification of this algebra isisomorphic to the compact form of E6. Following Boyle in [12], it is then easy to show that the gauge group of the minimal left-right symmetric extension of the Standard Model is isomorphic to a proper subgroup of Aut(C⊗h3(O))


2004 ◽  
Vol 19 (06) ◽  
pp. 467-479 ◽  
Author(s):  
B. ANANTHANARAYAN ◽  
P. N. PANDITA

We carry out an analysis of the non-universal supersymmetry breaking scalar masses arising in SO(10) supersymmetric unification. By considering patterns of squark and slepton masses, we derive a set of sum rules for the sfermion masses which are independent of the manner in which SO(10) breaks to the Standard Model gauge group via its SU(5) subgroups. The phenomenology arising from such non-universality is unaffected by the symmetry breaking pattern, so long as the breaking occurs via any of the SU(5) subgroups of the SO(10) group.


2016 ◽  
Vol 31 (26) ◽  
pp. 1650153
Author(s):  
Robert Delbourgo

Schemes based on anticommuting scalar coordinates, corresponding to properties, lead to generations of particles naturally. The application of Grassmannian duality cuts down the number of states substantially and is vital for constructing sensible Lagrangians anyhow. We apply duality to all of the subgroups within the classification group [Formula: see text], which encompasses the standard model gauge group, and thereby determine the full state inventory; this includes the definite prediction of quarks with charge [Formula: see text] and other exotic states. Assuming universal gravitational coupling to the gauge fields and parity even property curvature, we also obtain [Formula: see text] which is not far from the experimental value around the [Formula: see text] mass.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Salvatore Bottaro ◽  
Marco Costa ◽  
Oleg Popov

Abstract The goal of this work is to find the simplest UV completion of Accidental Composite Dark Matter Models (ACDM) that can dynamically generate an asymmetry for the DM candidate, the lightest dark baryon (DCb), and simultaneously annihilate the symmetric component. In this framework the DCb is a bound state of a confining SU(N)DC gauge group, and can interact weakly with the visible sector. The constituents of the DCb can possess non-trivial charges under the Standard Model gauge group. The generation of asymmetry for such candidate is a two-flavor variation of the out-of-equilibrium decay of a heavy scalar, with mass Mϕ ≳ 1010 GeV. Below the scale of the scalars, the models recover accidental stability, or long-livedness, of the DM candidate. The symmetric component is annihilated by residual confined interactions provided that the mass of the DCb mDCb ≲ 75 TeV. We implement the mechanism of asymmetry generation, or a variation of it, in all the original ACDM models, managing to generate the correct asymmetry for DCb of masses in this range. For some of the models found, the stability of the DM candidate is not spoiled even considering generic GUT completions or asymmetry generation mechanisms in the visible sector.


Sign in / Sign up

Export Citation Format

Share Document