exotic states
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 41)

H-INDEX

18
(FIVE YEARS 4)

Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 112
Author(s):  
Chiara D’Errico ◽  
Marco G. Tarallo

Disorder is everywhere in nature and it has a fundamental impact on the behavior of many quantum systems. The presence of a small amount of disorder, in fact, can dramatically change the coherence and transport properties of a system. Despite the growing interest in this topic, a complete understanding of the issue is still missing. An open question, for example, is the description of the interplay of disorder and interactions, which has been predicted to give rise to exotic states of matter such as quantum glasses or many-body localization. In this review, we will present an overview of experimental observations with disordered quantum gases, focused on one-dimensional bosons, and we will connect them with theoretical predictions.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012021
Author(s):  
Dmitrii Borovkov ◽  
Adrià Canós Valero

Abstract Multipole expansions of the source play an important role in a broad range of disciplines in modern physics, ranging from the description of exotic states of matter to the design of nanoantennas in photonics. Within the context of the latter, toroidal multipoles, a third group of multipoles complementing the well-known electric and magnetic ones, have been widely investigated since they lead to the formation of non-radiating sources. In the last years, however, the photonics community has brought to light the existence of a fourth type of multipoles that is commonly overlooked. Currently, different groups have provided different mathematical expressions to describe such sources, and they have been coined with different names; on the one hand mean-square radii, and on the other hand, as high order toroidal moments. Despite their clear physical similarity, a formal relation between the two has not yet been established. While explicit formulas for both types have been derived, they are not expressed in the same basis, and therefore it is not possible to draw a clear physical connection between them. In this contribution, we will bridge this gap and rigorously derive the connection between the two representations, taking as an example the cases of the nth order mean square radius of the electric dipole and the nth order electric toroidal dipole. Our results conclusively show that both types of representations are exactly equivalent up to a prefactor.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Xuejie Liu ◽  
Hongxia Huang ◽  
Jialun Ping ◽  
Dianyong Chen ◽  
Xinmei Zhu

AbstractInspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.


JETP Letters ◽  
2021 ◽  
Author(s):  
A. S. Demyanova ◽  
A. N. Danilov ◽  
S. V. Dmitriev ◽  
A. A. Ogloblin ◽  
V. I. Starastsin ◽  
...  
Keyword(s):  

2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Yu-Kuo Hsiao ◽  
Yao Yu
Keyword(s):  

2021 ◽  
Vol 118 (33) ◽  
pp. e2108617118
Author(s):  
Niloufar Nilforoushan ◽  
Michele Casula ◽  
Adriano Amaricci ◽  
Marco Caputo ◽  
Jonathan Caillaux ◽  
...  

Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, BaNiS2, through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of BaCo1−xNixS2 across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the Γ−M symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making BaCo1−xNixS2 a model system to functionalize Dirac materials by varying the strength of electron correlations.


2021 ◽  
Vol 312-317 ◽  
pp. 135-139
Author(s):  
H.G. Dosch ◽  
S.J. Brodsky ◽  
G.F. de Téramond ◽  
M. Nielsen ◽  
Liping Zou
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 751
Author(s):  
Luciano Maiani ◽  
Antonio Davide Polosa ◽  
Verónica Riquer

The charmonium-like exotic states Y(4230) and the less known Y(4320), produced in e+e− collisions, are sources of positive parity exotic hadrons in association with photons or pseudoscalar mesons. We analyze the radiative and pion decay channels in the compact tetraquark scheme, with a method that proves to work equally well in the most studied D∗→γ/π+D decays. The decay of the vector Y into a pion and a Zc state requires a flip of charge conjugation and isospin that is described appropriately in the formalism used. Rates are found to depend on the fifth power of pion momentum, which would make the final states πZc(4020) strongly suppressed with respect to πZc(3900). The agreement with BES III data would be improved considering the πZc(4020) events to be fed by the tail of the Y(4320) resonance under the Y(4230). These results should renovate the interest in further clarifying the emerging experimental picture in this mass region.


2021 ◽  
Vol 118 (14) ◽  
pp. e2025317118
Author(s):  
Leonid V. Pourovskii ◽  
Sergii Khmelevskyi

The nature of order in low-temperature phases of some materials is not directly seen by experiment. Such “hidden orders” (HOs) may inspire decades of research to identify the mechanism underlying those exotic states of matter. In insulators, HO phases originate in degenerate many-electron states on localized f or d shells that may harbor high-rank multipole moments. Coupled by intersite exchange, those moments form a vast space of competing order parameters. Here, we show how the ground-state order and magnetic excitations of a prototypical HO system, neptunium dioxide NpO2, can be fully described by a low-energy Hamiltonian derived by a many-body ab initio force theorem method. Superexchange interactions between the lowest crystal-field quadruplet of Np4+ ions induce a primary noncollinear order of time-odd rank 5 (triakontadipolar) moments with a secondary quadrupole order preserving the cubic symmetry of NpO2. Our study also reveals an unconventional multipolar exchange striction mechanism behind the anomalous volume contraction of the NpO2 HO phase.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Khalil Zakeri ◽  
Huajun Qin ◽  
Arthur Ernst

AbstractElectronic surface, interface and edge states are well-known concepts in low-dimensional solids and have already been utilised for practical applications. It is expected that magnons–the bosonic quasiparticles representing the magnetic excitations– shall also exhibit such exotic states. However, how these states are formed in layered magnetic structures is hitherto unknown. Here we bring the topic of magnonic surface and interface states in layered ferromagnets into discussion. We provide experimental examples of synthetic layered structures, supporting our discussions and show that these states can be tailored in artificially fabricated structures. We demonstrate that the magnonic surface or interface states may show peculiar features, including "standing” or "ultrafast” states. We argue that these states can drastically change their electronic and magnonic transport properties. In this way one can design layered ferromagnets which act as magnon conductor, semiconductor and insulator of specific states.


Sign in / Sign up

Export Citation Format

Share Document