ASSESSING THE IMPACTS OF RIVER REGULATION ON NATIVE BULL TROUT (SALVELINUS CONFLUENTUS ) AND WESTSLOPE CUTTHROAT TROUT (ONCORHYNCHUS CLARKII LEWISI ) HABITATS IN THE UPPER FLATHEAD RIVER, MONTANA, USA

2011 ◽  
Vol 28 (7) ◽  
pp. 940-959 ◽  
Author(s):  
C. C. Muhlfeld ◽  
L. Jones ◽  
D. Kotter ◽  
W. J. Miller ◽  
D. Geise ◽  
...  
Author(s):  
Adam J. Sepulveda ◽  
Robert Al-Chokhachy ◽  
Matthew B Laramie ◽  
Kyle Crapster ◽  
W Ladd Knotek ◽  
...  

The potential to provide inferences about fish abundance from environmental (e)DNA samples has generated great interest. However, the accuracy of these abundance estimates is often low and variable across species and space. A plausible refinement is the use of common aquatic habitat monitoring data to account for attributes that influence eDNA dynamics. We therefore evaluated the relationships between eDNA concentration and abundance of bull trout (Salvelinus confluentus), westslope cutthroat trout (Oncorhynchus clarkii lewisi) and rainbow trout (O. mykiss) at 42 stream sites in the Intermountain West (USA and CAN) and tested if accounting for site-specific habitat attributes improved the accuracy of fish abundance estimates. eDNA concentrations were positively associated with fish abundance but these relationships varied by species and site and there was considerable variation unaccounted for. Random site-level differences explained much of this variation, but specific habitat attributes of those sites explained relatively small amounts of this variation. Our results underscore that either eDNA sampling or environmental characterization will require further refinement before eDNA can be used reliably to estimate fish abundance in streams.


Author(s):  
Kadie B. Heinle ◽  
Lisa A. Eby ◽  
Clint C. Muhlfeld ◽  
Amber C. Steed ◽  
Leslie A. Jones ◽  
...  

Climate warming is expected to have substantial impacts on native trout across the Rocky Mountains, but there is little understanding of how these changes affect future distributions of co-occurring native fishes within population strongholds. We used mixed-effects logistic regression to investigate the role of abiotic (e.g., temperature) and biotic factors (Bull Trout presence, Salvelinus confluentus) on distributions of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi; WCT) in the North Fork Flathead River, USA and Canada. The probability of WCT presence increased with stream temperature and decreased with channel gradient and Bull Trout presence, yet the effect of Bull Trout was reduced with increasing pool densities. Combining this model with spatially-explicit stream temperature projections, we predict a 29% increase in suitable habitat under high emissions through 2075, with gains at mid-elevation sites predicted to exceed Bull Trout thermal tolerances and high-elevation sites expected to become more thermally suitable for WCT. Our study illustrates the importance of considering abiotic and biotic drivers to assess species response to climate change, helping to guide local scale climate adaptation and management.


2014 ◽  
Vol 71 (2) ◽  
pp. 189-202 ◽  
Author(s):  
Ryan J. MacDonald ◽  
Sarah Boon ◽  
James M. Byrne ◽  
Mike D. Robinson ◽  
Joseph B. Rasmussen

Native salmonids of western North America are subject to many environmental pressures, most notably the effects of introduced species and environmental degradation. To better understand how native salmonids on the eastern slopes of the Canadian Rocky Mountains may respond to future changes in climate, we applied a process-based approach to hydrologic and stream temperature modelling. This study demonstrates that stream thermal regimes in western Alberta, Canada, may only warm during the summer period, while colder thermal regimes during spring, fall, and winter could result from response to earlier onset of spring freshet. Model results of future climate impacts on hydrology and stream temperature are corroborated by an intercatchment comparison of stream temperature, air temperature, and hydrological conditions. Earlier fry emergence as a result of altered hydrological and thermal regimes may favour native westslope cutthroat trout (Oncorhynchus clarkii lewisii) in isolated headwater streams. Colder winter stream temperatures could result in longer incubation periods for native bull trout (Salvelinus confluentus) and limit threatened westslope cutthroat trout habitat.


Author(s):  
Camille J. Macnaughton ◽  
Travis C. Durhack ◽  
Neil J. Mochnacz ◽  
Eva C. Enders

The physiology and behaviour of fish are strongly affected by ambient water temperature. Physiological traits related to metabolism, such as aerobic scope (AS), can be measured across temperature gradients and the resulting performance curve reflects the thermal niche that fish can occupy. We measured AS of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi) at 5, 10, 15, 20, and 22°C and compared temperature preference (Tpref) of the species to non-native Brook Trout, Brown Trout, and Rainbow Trout. Intermittent-flow respirometry experiments demonstrated that metabolic performance of Westslope Cutthroat Trout was optimal at ~15 °C and decreased substantially beyond this temperature, until lethal temperatures at ~25 °C. Adjusted preferred temperatures across species (Tpref) were comparatively high, ranging from 17.8-19.9 °C, with the highest Tpref observed for Westslope Cutthroat Trout. Results suggest that although Westslope Cutthroat Trout is considered a cold-water species, they do not prefer or perform as well in cold water (≤ 10°C), thus, can occupy a warmer thermal niche than previously thought. The metabolic performance curve (AS) can be used to develop species‐specific thermal criteria to delineate important thermal habitats and guide conservation and recovery actions for Westslope Cutthroat Trout.


<em>Abstract</em>.—There has been considerable interest in the systematics and classification of Cutthroat Trout since the 1800s. Cutthroat Trout native to western North America (currently classified as <em>Oncorhynchus clarkii</em>) have historically been grouped or separated using many different classification schemes. Since the 1960s, Robert Behnke has been a leader in these efforts. Introductions of nonnative trout (other forms of Cutthroat Trout, and Rainbow Trout <em>O. mykiss</em>) have obscured some historical patterns of distribution and differentiation. Morphological and meristic analyses have often grouped the various forms of Cutthroat Trout together based on the shared presence of the “cutthroat mark,” high scale counts along the lateral line, and the presence of basibranchial teeth. Spotting patterns and counts of gill rakers and pyloric caeca have in some cases been helpful in differentiation of groups (e.g., Coastal Cutthroat Trout <em>O. c. clarkii</em>, Lahontan Cutthroat Trout <em>O. c. henshawi</em>, and Westslope Cutthroat Trout <em>O. c. lewisi</em>) currently classified as subspecies. The historical genetic methods of allozyme genotyping through protein electrophoresis and chromosome analyses were often helpful in differentiating the various subspecies of Cutthroat Trout. Allozyme genotyping allowed four major groups to be readily recognized (Coastal Cutthroat Trout, Westslope Cutthroat Trout, the Lahontan Cutthroat Trout subspecies complex, and Yellowstone Cutthroat Trout <em>O. c. bouvieri </em>subspecies complex) while chromosome analyses showed similarity between the Lahontan and Yellowstone Cutthroat trout subspecies complex trout (possibly reflecting shared ancestral type) and differentiated the Coastal and Westslope Cutthroat trouts from each other and those two groups. DNA results may yield higher resolution of evolutionary relationships of Cutthroat Trout and allow incorporation of ancient museum samples. Accurate resolution of taxonomic differences among various Cutthroat Trout lineages, and hybridization assessments, requires several approaches and will aid in conservation of these charismatic and increasingly rare native fishes.


2009 ◽  
Vol 66 (7) ◽  
pp. 1153-1168 ◽  
Author(s):  
Clint C. Muhlfeld ◽  
Thomas E. McMahon ◽  
Durae Belcer ◽  
Jeffrey L. Kershner

We used radiotelemetry to assess spatial and temporal spawning distributions of native westslope cutthroat trout ( Oncorhynchus clarkii lewisi ; WCT), introduced rainbow trout ( Oncorhynchus mykiss ; RBT), and their hybrids in the upper Flathead River system, Montana (USA) and British Columbia (Canada), from 2000 to 2007. Radio-tagged trout (N = 125) moved upriver towards spawning sites as flows increased during spring runoff and spawned in 29 tributaries. WCT migrated greater distances and spawned in headwater streams during peak flows and as flows declined, whereas RBT and RBT hybrids (backcrosses to RBT) spawned earlier during increasing flows and lower in the system. WCT hybrids (backcrosses to WCT) spawned intermediately in time and space to WCT and RBT and RBT hybrids. Both hybrid groups and RBT, however, spawned over time periods that produced temporal overlap with spawning WCT in most years. Our data indicate that hybridization is spreading via long-distance movements of individuals with high amounts of RBT admixture into WCT streams and stepping-stone invasion at small scales by later generation backcrosses. This study provides evidence that hybridization increases the likelihood of reproductive overlap in time and space, promoting extinction by introgression, and that the spread of hybridization is likely to continue if hybrid source populations are not reduced or eliminated.


2018 ◽  
Vol 75 (11) ◽  
pp. 1778-1783 ◽  
Author(s):  
Samuel L. Bourret ◽  
Niall G. Clancy

Illegal fish introductions create some of the most challenging problems for resource managers because of their potential to harm existing recreational fisheries and their impact on species of conservation concern. Determining the origin of a suspected illegal fish introduction can aid managers in preventing the colonization and subsequent ecosystem impacts of introduced species. In this study, we used forensic geochemistry via fish otoliths to investigate an illegal walleye (Sander vitreus) introduction in Swan Lake, Montana, which provides critical habitat for threatened bull trout (Salvelinus confluentus) and native westslope cutthroat trout (Oncorhynchus clarkii). Core to edge geochemical profiles of 87Sr/86Sr and Sr/Ca ratios in the walleye otoliths revealed that these fish had been introduced to Swan Lake within the past growing season, and their geochemical signature matched that of walleye sampled from Lake Helena, Montana, located 309 road kilometres away. This research highlights application of a tool fisheries managers can use to identify the natal waterbody source of illegally introduced fish.


2011 ◽  
Vol 12 (6) ◽  
pp. 1513-1523 ◽  
Author(s):  
Daniel P. Drinan ◽  
Steven T. Kalinowski ◽  
Ninh V. Vu ◽  
Bradley B. Shepard ◽  
Clint C. Muhlfeld ◽  
...  

2014 ◽  
Vol 92 (9) ◽  
pp. 777-784 ◽  
Author(s):  
M.M. Yau ◽  
E.B. Taylor

Hybridization between rainbow trout (Oncorhynchus mykiss (Walbaum, 1792)) and westslope cutthroat trout (Oncorhynchus clarkii lewisi (Girard, 1856)) occurs commonly when rainbow trout are introduced into the range of westslope cutthroat trout. Typically, hybridization is most common in warmer, lower elevation habitats, but much less common in colder, higher elevation habitats. We assessed the tolerance to cold water temperature (i.e., critical thermal minimum, CTMin) in juvenile rainbow trout and westslope cutthroat trout to test the hypothesis that westslope cutthroat trout better tolerate low water temperature, which may explain the lower prevalence of rainbow trout and interspecific hybrids in higher elevation, cold-water habitats (i.e., the “elevation refuge hypothesis”). All fish had significantly lower CTMin values (i.e., were better able to tolerate low temperatures) when they were acclimated to 15 °C (mean CTMin = 1.37 °C) versus 18 °C (mean CTMin = 1.91 °C; p < 0.001). Westslope cutthroat trout tended to have lower CTMin than rainbow trout from two populations, second–generation (F2) hybrids between two rainbow trout populations, and backcrossed rainbow trout at 15 °C (cross type × acclimation temperature interaction; p = 0.018). Differential adaptation to cold water temperatures may play a role in influencing the spatial distribution of hybridization between sympatric species of trout.


Sign in / Sign up

Export Citation Format

Share Document