Introduction: Background for Ordinary Differential Equations and Dynamical Systems

Author(s):  
Stephen Wiggins
2018 ◽  
Vol 16 ◽  
pp. 01005
Author(s):  
Felix Sadyrbaev

Mathematical models of artificial networks can be formulated in terms of dynamical systems describing the behaviour of a network over time. The interrelation between nodes (elements) of a network is encoded in the regulatory matrix. We consider a system of ordinary differential equations that describes in particular also genomic regulatory networks (GRN) and contains a sigmoidal function. The results are presented on attractors of such systems for a particular case of cross activation. The regulatory matrix is then of particular form consisting of unit entries everywhere except the main diagonal. We show that such a system can have not more than three critical points. At least n–1 eigenvalues corresponding to any of the critical points are negative. An example for a particular choice of sigmoidal function is considered.


1993 ◽  
Vol 03 (02) ◽  
pp. 333-361 ◽  
Author(s):  
RENÉ LOZI ◽  
SHIGEHIRO USHIKI

We apply the new concept of confinors and anti-confinors, initially defined for ordinary differential equations constrained on a cusp manifold, to the equations governing the circuit dynamics of Chua’s circuit. We especially emphasize some properties of the confinors of Chua’s equation with respect to the patterns in the time waveforms. Some of these properties lead to a very accurate numerical method for the computation of the half-Poincaré maps which reveal the precise structures of Chua’s strange attractors and the exact bifurcation diagrams with the help of a special sequence of change of coordinates. We also recall how such accurate methods allow the reliable numerical observation of the coexistence of three distinct chaotic attractors for at least one choice of the parameters. Chua’s equation seemssurprisingly rich in very new behaviors not yet reported even in other dynamical systems. The application of the theory of confinors to Chua’s equation and the use of sequences of Taylor’s coordinates could give new perspectives to the study of dynamical systems by uncovering very unusual behaviors not yet reported in the literature. The main paradox here is that the theory of confinors, which could appear as a theory of rough analysis of the phase portrait of Chua’s equation, leads instead to a very accurate analysis of this phase portrait.


2009 ◽  
Vol 19 (11) ◽  
pp. 3593-3604 ◽  
Author(s):  
CRISTINA JANUÁRIO ◽  
CLARA GRÁCIO ◽  
DIANA A. MENDES ◽  
JORGE DUARTE

The study of economic systems has generated deep interest in exploring the complexity of chaotic motions in economy. Due to important developments in nonlinear dynamics, the last two decades have witnessed strong revival of interest in nonlinear endogenous business chaotic models. The inability to predict the behavior of dynamical systems in the presence of chaos suggests the application of chaos control methods, when we are more interested in obtaining regular behavior. In the present article, we study a specific economic model from the literature. More precisely, a system of three ordinary differential equations gather the variables of profits, reinvestments and financial flow of borrowings in the structure of a firm. Firstly, using results of symbolic dynamics, we characterize the topological entropy and the parameter space ordering of kneading sequences, associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. Finally, we show that complicated behavior arising from the chaotic firm model can be controlled without changing its original properties and the dynamics can be turned into the desired attracting time periodic motion (a stable steady state or into a regular cycle). The orbit stabilization is illustrated by the application of a feedback control technique initially developed by Romeiras et al. [1992]. This work provides another illustration of how our understanding of economic models can be enhanced by the theoretical and numerical investigation of nonlinear dynamical systems modeled by ordinary differential equations.


1987 ◽  
Vol 42 (6) ◽  
pp. 547-555 ◽  
Author(s):  
Joseph L. McCauley

We discuss the replacement of discrete maps by automata, algorithms for the transformation of finite length digit strings into other finite length digit strings, and then discuss what it required in order to replace chaotic phase flows that are generated by ordinary differential equations by automata without introducing unknown and uncontrollable errors. That question arises naturally in the discretization of chaotic differential equations for the purpose of computation. We discuss as examples an autonomous and a periodically driven system, and a possible connection with cellular automata is also discussed. Qualitatively, our considerations are equivalent to asking when can the solution of a chaotic set of equations be regarded as a machine, or a model of a machine.


Sign in / Sign up

Export Citation Format

Share Document