∞-Laplacian Obstacle Problems in Fractal Domains

Author(s):  
Salvatore Fragapane
2018 ◽  
Vol 8 (1) ◽  
pp. 1043-1056 ◽  
Author(s):  
Raffaela Capitanelli ◽  
Salvatore Fragapane ◽  
Maria Agostina Vivaldi

Abstract We study obstacle problems involving p-Laplace-type operators in non-convex polygons. We establish regularity results in terms of weighted Sobolev spaces. As applications, we obtain estimates for the FEM approximation for obstacle problems in pre-fractal Koch Islands.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.


2021 ◽  
Vol 62 ◽  
pp. 103353
Author(s):  
Giacomo Bertazzoni ◽  
Samuele Riccò
Keyword(s):  

2019 ◽  
Vol 7 (1) ◽  
pp. 179-196
Author(s):  
Anders Björn ◽  
Daniel Hansevi

Abstract The theory of boundary regularity for p-harmonic functions is extended to unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1 < p < ∞. The barrier classification of regular boundary points is established, and it is shown that regularity is a local property of the boundary. We also obtain boundary regularity results for solutions of the obstacle problem on open sets, and characterize regularity further in several other ways.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Raffaela Capitanelli ◽  
Maria Agostina Vivaldi

AbstractIn this paper, we study asymptotic behavior of solutions to obstacle problems for p-Laplacians as {p\to\infty}. For the one-dimensional case and for the radial case, we give an explicit expression of the limit. In the n-dimensional case, we provide sufficient conditions to assure the uniform convergence of the whole family of the solutions of obstacle problems either for data f that change sign in Ω or for data f (that do not change sign in Ω) possibly vanishing in a set of positive measure.


2007 ◽  
Vol 67 (2) ◽  
pp. 554-562
Author(s):  
Thomas I. Seidman
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhenhua Hu ◽  
Shuqing Zhou

We first introduce double obstacle systems associated with the second-order quasilinear elliptic differential equationdiv(A(x,∇u))=div f(x,u), whereA(x,∇u),f(x,u)are twon×Nmatrices satisfying certain conditions presented in the context, then investigate the local and global higher integrability of weak solutions to the double obstacle systems, and finally generalize the results of the double obstacle problems to the double obstacle systems.


Sign in / Sign up

Export Citation Format

Share Document