admissible functions
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Abbas Kareem Wanas ◽  
Najah Ali Jiben Al-Ziadi

In the present article, we define a new family for holomorphic functions (so-called Bazilevic-Sakaguchi type functions) and determinate strong differential subordination and superordination results for these new functions by investigating certain suitable classes of admissible functions. These results are applied to obtain strong differential sandwich results.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Amal Mohammed Darweesh ◽  
Waggas Galib Atshan ◽  
Ali Hussein Battor ◽  
Alina Alb Lupaş

In this research, we study suitable classes of admissible functions and establish the properties of third-order differential subordination by making use a certain differential operator of analytic functions in U and have the normalized Taylor–Maclaurin series of the form: f(z)=z+∑n=2∞anzn, (z∈U). Some new results on differential subordination with some corollaries are obtained. These properties and results are symmetry to the properties of the differential superordination to form the sandwich theorems.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7712
Author(s):  
Chiung-Shiann Huang ◽  
Hao-Ting Lee ◽  
Pin-Yu Li ◽  
Ming-Ju Chang

In this study, the moving least squares (MLS)-Ritz method, which involves combining the Ritz method with admissible functions established using the MLS approach, was used to predict the vibration frequencies of cracked functionally graded material (FGM) plates under static loading on the basis of the three-dimensional elasticity theory. Sets of crack functions are proposed to enrich a set of polynomial functions for constructing admissible functions that represent displacement and slope discontinuities across a crack and appropriate stress singularity behaviors near a crack front. These crack functions enhance the Ritz method in terms of its ability to identify a crack in a plate. Convergence studies of frequencies and comparisons with published results were conducted to demonstrate the correctness and accuracy of the proposed solutions. The proposed approach was also employed for accurately determining the frequencies of cantilevered and simply supported side-cracked rectangular FGM plates and cantilevered internally cracked skewed rhombic FGM plates under uniaxial normal traction. Moreover, the effects of the volume fractions of the FGM constituents, crack configurations, and traction magnitudes on the vibration frequencies of cracked FGM plates were investigated.


2021 ◽  
Author(s):  
Srividyadhare Kateel ◽  
Natalie Baddour

Abstract Assumed mode methods are often used in vibrations analysis, where the choice of assumed mode affects the stability and useability of the method. System eigenfunctions are often used for these expansions, however a change in the boundary conditions usually results in a change in eigenfunction. This paper investigates the use of Alternative Admissible Functions (AAF) with penalties for the vibration analysis of an Euler-Bernoulli beam for different boundary conditions. A key advantage of the proposed approach is that the choice of AAF does not depend on the boundary conditions since the boundary conditions are modelled via penalty functions. The mathematical formulation of the system matrices, and the effect of beam geometry changes on the computed natural frequencies and modeshapes are presented. The computed natural frequencies and mode shapes show an excellent agreement when compared with closed-form Euler-Bernoulli beam values. The study reveals that with an increase in the stiffness of the beam, the values of the penalties need to be increased. The results of this study suggest that boundary conditions, as well as beam geometrical parameters should be considered when selecting appropriate values of the penalties.


2021 ◽  
Vol 263 (2) ◽  
pp. 4502-4510
Author(s):  
Jamie Kha

An analytical model to predict the vibrational response of a simply supported rectangular plate embedded in an infinite baffle with an upper free surface under heavy fluid loading and excited by a point force is presented. The equations of motion of a thin plate are solved using­­­­­­ modal decomposition technique by employing admissible functions for an in-vacuo plate and by directly solving the Helmholtz equation for acoustic waves in a fluid. The vibrational response for a flat plate in an infinite baffle and unbounded domain (semi-infinite domain) using analytical formulation available in literature is initially computed. These results are then compared against present results to observe the effect of a free surface. Predictions from analytical models are validated by comparison with results obtained by numerical models. The proposed analytical approach presents a novel formulation to describe a fluid-loaded flat plate in a waveguide and an efficient method for predicting its vibrational response.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 171
Author(s):  
Delfim F. M. Torres

The calculus of variations is a field of mathematical analysis born in 1687 with Newton’s problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the associated Euler–Lagrange equations. The subject has found many applications over the centuries, e.g., in physics, economics, engineering and biology. Up to this moment, however, the theory of the calculus of variations has been confined to Newton’s approach to calculus. As in many applications negative values of admissible functions are not physically plausible, we propose here to develop an alternative calculus of variations based on the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967 and 1970, which provides a calculus defined, from the very beginning, for positive real numbers only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes between a dependent positive variable and an independent variable that is also positive. In this way, the non-Newtonian calculus of variations we introduce here provides a natural framework for problems involving functions with positive images. Our main result is a first-order optimality condition of Euler–Lagrange type. The new calculus of variations complements the standard one in a nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible positive range. An illustrative example is given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Georgia Irina Oros

AbstractTwo new integral operators are defined in this paper using the classical Bernardi and Libera integral operators and the confluent (or Kummer) hypergeometric function. It is proved that the new operators preserve certain classes of univalent functions, such as classes of starlike and convex functions, and that they extend starlikeness of order $\frac{1}{2}$ 1 2 and convexity of order $\frac{1}{2}$ 1 2 to starlikeness and convexity, respectively. For obtaining the original results, the method of admissible functions is used, and the results are also written as differential inequalities and interpreted using inclusion properties for certain subsets of the complex plane. The example provided shows an application of the original results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
Georgia Irina Oros

Since in many particular cases checking directly the conditions from the definitions of starlikeness or convexity of a function can be difficult, in this paper we use the theory of differential subordination and in particular the method of admissible functions in order to determine conditions of starlikeness and convexity for the confluent (Kummer) hypergeometric function of the first kind. Having in mind the results obtained by Miller and Mocanu in 1990 who used a,c∈R, for the confluent (Kummer) hypergeometric function, in this investigation a and c complex numbers are used and two criteria for univalence of the investigated function are stated. An example is also included in order to show the relevance of the original results of the paper.


2021 ◽  
Vol 27 ◽  
pp. 19 ◽  
Author(s):  
M. Caselli ◽  
M. Eleuteri ◽  
A. Passarelli di Napoli

In this paper we prove the the local Lipschitz continuity for solutions to a class of obstacle problems of the type min{ ∫ΩF(x, Dz) : z ∈ 𝛫ψ(Ω)}. Here 𝛫ψ(Ω) is the set of admissible functions z ∈ u0 + W1,p(Ω) for a given u0 ∈ W1,p(Ω) such that z ≥ ψ a.e. in Ω, ψ being the obstacle and Ω being an open bounded set of ℝn, n ≥ 2. The main novelty here is that we are assuming that the integrand F(x, Dz) satisfies (p, q)-growth conditions and as a function of the x-variable belongs to a suitable Sobolev class. We remark that the Lipschitz continuity result is obtained under a sharp closeness condition between the growth and the ellipticity exponents. Moreover, we impose less restrictive assumptions on the obstacle with respect to the previous regularity results. Furthermore, assuming the obstacle ψ is locally bounded, we prove the local boundedness of the solutions to a quite large class of variational inequalities whose principal part satisfies non standard growth conditions.


Sign in / Sign up

Export Citation Format

Share Document