Local Culprits of Shape Complexity

Author(s):  
Mazlum Ferhat Arslan ◽  
Sibel Tari
Keyword(s):  
2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1583
Author(s):  
Justyna Kasińska ◽  
Marek Matejka ◽  
Dana Bolibruchová ◽  
Michal Kuriš ◽  
Lukáš Širanec

The main reason for the use of returnable material, or recycled alloys, is a cost reduction while maintaining the final properties of the casting. The casting resulting quality is directly related to the correct ratio of commercial grade alloy and alloy made by remelting the returnable material in the batch. The casting quality is also affected by the purity of the secondary raw materials used, the shape complexity and the use of the casting itself. The presented article focuses on the effect of increasing the returnable material content in the batch on the hot tearing susceptibility of AlSi9Cu3 alloy. Hot tears are a complex phenomenon that combines metallurgical and thermo-mechanical interactions of the cast metal. Hot tearing susceptibility was evaluated on the basis of quantitative (HTS — hot tearing susceptibility index) and qualitative evaluation. The negative effect of returnable material in the batch was already manifested at a 20% content in the batch. The critical proportion of the returnable alloy in the batch can be stated as 50%. The alloy with a 50% returnable material content manifested insufficient results of the HTS index and qualitative evaluation, which means increased sensitivity to tearing. The negative effect of returnable material and the increased sensitivity were also confirmed in the evaluation of the fracture surface and hot tear profile. The microstructure of alloys with 50% and higher proportion of returnable material was characterized by a higher amount of iron phases (mainly Al5FeSi), whose sharp ends acted as critical regions of hot tearing and subsequent hot tear propagation, which had a major impact on the increase in hot tearing susceptibility.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 306
Author(s):  
Nándor Csikós ◽  
Péter Szilassi

The dramatic decline of the abundance of farmland bird species can be related to the level of land-use intensity or the land-cover heterogeneity of rural landscapes. Our study area in central Europe (Hungary) included 3049 skylark observation points and their 600 m buffer zones. We used a very detailed map (20 × 20 m minimum mapping unit), the Hungarian Ecosystem Basemap, as a land-cover dataset for the calculation of three landscape indices: mean patch size (MPS), mean fractal dimension (MFRACT), and Shannon diversity index (SDI) to describe the landscape structure of the study areas. Generalized linear models were used to analyze the effect of land-cover types and landscape patterns on the abundance of the Eurasian skylark (Alauda arvensis). According to our findings, the proportions of arable land, open sand steppes, closed grassland patches, and shape complexity and size characteristics of these land cover patches have a positive effect on skylark abundance, while the SDI was negatively associated with the skylark population. On the basis of the used statistical model, the abundance density (individuals/km*) of skylarks could be estimated with 37.77% absolute percentage error and 2.12 mean absolute error. We predicted the skylark population density inside the Natura 2000 Special Protected Area of Hungary which is 0–6 individuals/km* and 23746 ± 8968 skylarks. The results can be implemented for the landscape management of rural landscapes, and the method used are adaptable for the density estimation of other farmland bird species in rural landscapes. According to our findings, inside the protected areas should increase the proportion, the average size and shape complexity of arable land, salt steppes and meadows, and closed grassland land cover patches.


2021 ◽  
Author(s):  
Joana Nogueira ◽  
Julia Rodrigues ◽  
Jan Lehmann ◽  
Hanna Meyer ◽  
Renata Libonati

&lt;p&gt;Fire events on a landscape scale are a widespread global phenomenon that influences the interactions between atmosphere and biosphere. Global burned area (BA) products derived from satellite images are used in dynamic vegetation fire modules to estimate greenhouse gas emissions, available fuel biomass and anthropic factors driving fire spread. Fire size and shape complexity from individual fire events can provide better estimates of fuel consumption, fire intensity, post fire vegetation recovery and their effects on landscape changes to better understand regional fire dynamics. Especially in the Brazilian savannas (Cerrado), a mosaic of heterogeneous vegetation where has prevailed an official &amp;#8220;zero-fire&amp;#8221; policy for decades leading to an increase in large wildfires, intensified also by rapid changes of land use using fire to land clearing in agriculture and livestock purposes. In this way, we aim to assess the fire size and shape patterns in Cerrado from 2013 to 2015, identifying each fire patch event from Landsat BA product and calculating its fire features with landscape metrics. We calculated its surface area to evaluate fire size and the metrics of shape index, core area and eccentricity from an ellipse fitting from burned pixels to estimate the fire shape complexity. The study focused on 48 Landsat path/row scenes and the analysis final compared the fire features of overlapped patches between the years. The total number of coincident fire patches is higher between the years 2013 and 2015 than 2013-2014 and 2014-2015. Large fires are found in the north and east regions for all comparisons. In this region, high core area values are consistent for having large areas of burnt patches and low shape index values and more elongated patches revealed a low fire shape complexity. These results demonstrate a greater burned area in the north, where the remaining native vegetation and less fragmented landscapes allow the fire to spread, when associated with favorable meteorological conditions. However, with the implementation of a new agricultural frontier in 2015, this region is under greater anthropic pressure with positive trends to land use. In the south, the fire shapes are already more complex and smaller because they are from agricultural areas historically developed, and consequently the landscape is more fragmented. Our results demonstrate a distinct spatial pattern of fire shape and size in Cerrado related to fragmentation of landscape and fire use to land cleaning. This information can help the modelling estimates of fire spread processes driven by topography, orientation of watersheds or dominant winds at local level, contributing to understanding the feedback with land cover/use, climate and biophysical characteristics at regional level to develop strategies for fire management.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledges:&lt;/strong&gt; J.N is funded by the 'Women in Research'-fellowship program (WWU M&amp;#252;nster) and within the context of BIOBRAS Project &amp;#8220;Research-based learning in neglected biodiverse ecosystems of Brazil&amp;#8221;; funding by DAAD (number 57393735); validation dataset was performed under the Andur&amp;#225; project (number 441971/2018&amp;#8211;0) funding by CNPq&lt;/p&gt;


1956 ◽  
Vol 2 (4) ◽  
pp. 305-312 ◽  
Author(s):  
E. W. Dempsey

A characteristic internal structure, consisting of a double-layered outer wall enclosing a matrix-filled space through which pass double-layered membranous folds, would appear to comprise as satisfactory a definition of mitochondria for electron microscopy as their intravital affinity for Janus green affords for light microscopy. Relying for identification upon this characteristic internal structure, mitochondria appear to be pleomorphic structures which vary in size, shape, complexity, and density. They are labile also in that their number may increase or decrease under controlled conditions. The possibility therefore exists that these organelles are constantly being formed and destroyed, perhaps by their participation in metabolic processes. The problem of the origin of mitochondria is in an unsatisfactory state. New organelles unquestionably are formed in particular physiological states. The possibility that new bodies are produced by fission of ones already present does not seem adequate. On the other hand, the possible fabrication of new mitochondria out of intracellular membranes, although an attractive hypothesis, has not been adequately substantiated.


2009 ◽  
pp. 41-52
Author(s):  
Tarmo Remmel ◽  
Connie Ko ◽  
Rick Bello
Keyword(s):  

2020 ◽  
Author(s):  
R.P. Vivek-Ananth ◽  
Ajaya Kumar Sahoo ◽  
Kavyaa Kumaravel ◽  
Karthikeyan Mohanraj ◽  
Areejit Samal

AbstractFungi are a rich source of secondary metabolites which constitutes a valuable and diverse chemical space of natural products. Medicinal fungi have been used in traditional medicine to treat human ailments for centuries. To date, there is no devoted resource on secondary metabolites and therapeutic uses of medicinal fungi. Such a dedicated resource compiling dispersed information on medicinal fungi across published literature will facilitate ongoing efforts towards natural product based drug discovery. Here, we present the first comprehensive manually curated database on Medicinal Fungi Secondary metabolites And Therapeutics (MeFSAT) that compiles information on 184 medicinal fungi, 1830 secondary metabolites and 149 therapeutics uses. Importantly, MeFSAT contains a non-redundant in silico natural product library of 1830 secondary metabolites along with information on their chemical structures, computed physicochemical properties, drug-likeness properties, predicted ADMET properties, molecular descriptors and predicted human target proteins. By comparing the physicochemical properties of secondary metabolites in MeFSAT with other small molecules collections, we find that fungal secondary metabolites have high stereochemical complexity and shape complexity similar to other natural product libraries. Based on multiple scoring schemes, we have filtered a subset of 228 drug-like secondary metabolites in MeFSAT database. By constructing and analyzing chemical similarity networks, we show that the chemical space of secondary metabolites in MeFSAT is highly diverse. The compiled information in MeFSAT database is openly accessible at: https://cb.imsc.res.in/mefsat/.


Sign in / Sign up

Export Citation Format

Share Document