scholarly journals Inertial Sensor Based Modelling of Human Activity Classes: Feature Extraction and Multi-sensor Data Fusion Using Machine Learning Algorithms

Author(s):  
Tahmina Zebin ◽  
Patricia J. Scully ◽  
Krikor B. Ozanyan
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1434 ◽  
Author(s):  
Minle Li ◽  
Yihua Hu ◽  
Nanxiang Zhao ◽  
Qishu Qian

Three-dimensional (3D) object detection has important applications in robotics, automatic loading, automatic driving and other scenarios. With the improvement of devices, people can collect multi-sensor/multimodal data from a variety of sensors such as Lidar and cameras. In order to make full use of various information advantages and improve the performance of object detection, we proposed a Complex-Retina network, a convolution neural network for 3D object detection based on multi-sensor data fusion. Firstly, a unified architecture with two feature extraction networks was designed, and the feature extraction of point clouds and images from different sensors realized synchronously. Then, we set a series of 3D anchors and projected them to the feature maps, which were cropped into 2D anchors with the same size and fused together. Finally, the object classification and 3D bounding box regression were carried out on the multipath of fully connected layers. The proposed network is a one-stage convolution neural network, which achieves the balance between the accuracy and speed of object detection. The experiments on KITTI datasets show that the proposed network is superior to the contrast algorithms in average precision (AP) and time consumption, which shows the effectiveness of the proposed network.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1461 ◽  
Author(s):  
Juri Taborri ◽  
Eduardo Palermo ◽  
Stefano Rossi

The validity of results in race walking is often questioned due to subjective decisions in the detection of faults. This study aims to compare machine-learning algorithms fed with data gathered from inertial sensors placed on lower-limb segments to define the best-performing classifiers for the automatic detection of illegal steps. Eight race walkers were enrolled and linear accelerations and angular velocities related to pelvis, thighs, shanks, and feet were acquired by seven inertial sensors. The experimental protocol consisted of two repetitions of three laps of 250 m, one performed with regular race walking, one with loss-of-contact faults, and one with knee-bent faults. The performance of 108 classifiers was evaluated in terms of accuracy, recall, precision, F1-score, and goodness index. Generally, linear accelerations revealed themselves as more characteristic with respect to the angular velocities. Among classifiers, those based on the support vector machine (SVM) were the most accurate. In particular, the quadratic SVM fed with shank linear accelerations was the best-performing classifier, with an F1-score and a goodness index equal to 0.89 and 0.11, respectively. The results open the possibility of using a wearable device for automatic detection of faults in race walking competition.


Sign in / Sign up

Export Citation Format

Share Document