A Novel Design Methodology for High Tuning Linearity and Wide Tuning Range Ring Voltage Controlled Oscillator

Author(s):  
Gudlavalleti Rajahari ◽  
Yashu Anand Varshney ◽  
Subash Chandra Bose
2012 ◽  
Vol 256-259 ◽  
pp. 2373-2378
Author(s):  
Wu Shiung Feng ◽  
Chin I Yeh ◽  
Ho Hsin Li ◽  
Cheng Ming Tsao

A wide-tuning range voltage-controlled oscillator (VCO) with adjustable ground-plate inductor for ultra-wide band (UWB) application is presented in this paper. The VCO was implemented by standard 90nm CMOS process at 1.2V supply voltage and power consumption of 6mW. The tuning range from 13.3 GHz to 15.6 GHz with phase noise between -99.98 and -115dBc/Hz@1MHz is obtained. The output power is around -8.7 to -9.6dBm and chip area of 0.77x0.62mm2.


Author(s):  
A. Garimella ◽  
L.M. Kalyani-Garimella ◽  
R. Romero ◽  
J. Ramirez-Angulo ◽  
R.G. Carvajal ◽  
...  

2012 ◽  
Vol 21 (04) ◽  
pp. 1250033 ◽  
Author(s):  
FATEMEH ATAEI ◽  
MOHAMMAD YAVARI

In this paper, a new class-C voltage-controlled oscillator (VCO) is presented. In the proposed VCO, the tail capacitor of the conventional class-C oscillator is dislocated from the source of the cross-coupled transistors to their gate to achieve a rail-to-rail output swing. This improves the phase noise by 2.9 dB compared to the conventional class-C one. Besides, a new switching scheme is presented in the switched capacitor bank used for coarse tuning of the proposed VCO to lower the on resistance of the switches as well as to reduce the parasitic capacitors. This wide tuning range class-C VCO is designed in a 0.18 μm CMOS technology. It achieves a -125.3 dBc/Hz phase noise at 1 MHz offset from a 2.2 GHz carrier frequency while covering a wide tuning range from 1.82 to 2.65 GHz and consuming 3.5 mW power from a single 0.9 V power supply.


2019 ◽  
Vol 28 (14) ◽  
pp. 1950242
Author(s):  
Omar Faruqe ◽  
Md Tawfiq Amin

This paper presents a varactorless tunable active inductor-based voltage controlled oscillator (VCO) in 90[Formula: see text]nm CMOS process. The proposed VCO yields a wide tuning range of 116% with an output frequency of 1.19–4.46[Formula: see text]GHz for the tuning voltage of 0.3–1.5[Formula: see text]V. It consumes a low dc power ranging from 2.44[Formula: see text]mW to 4.79[Formula: see text]mW for the specified tuning range. The variation of phase noise ranges from [Formula: see text][Formula: see text]dBc/Hz to [Formula: see text][Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset with the change of tuning voltage as well as tuning frequency. The proposed varactorless VCO has a maximum Figure of Merit (FOM) of [Formula: see text][Formula: see text]dBc/Hz with a differential output power of 1.8[Formula: see text]dBm at tuning voltage of 0.7[Formula: see text]V. The elimination of varactor which abates the silicon area consumption and the minimization of the variation of performance parameters are the special outcomes of the proposed active inductor-based VCO. Comparing the performance parameters such as power consumption, FOM and tuning range, the proposed design outperforms most of the cited designs.


Sign in / Sign up

Export Citation Format

Share Document