Stress–Strain Relationship for the Singular Point on the Yield Surface of the Elasto-Plastic Constitutive Model and Quantification of Metastability

Author(s):  
Tomohide Takeyama ◽  
Thirapong Pipatpongsa ◽  
Atsushi Iizuka ◽  
Hideki Ohta
2010 ◽  
Vol 163-167 ◽  
pp. 1171-1174 ◽  
Author(s):  
Li Sun ◽  
Wei Min Huang ◽  
Hendra Purnawali

In this paper we present a new constitutive model for concrete. The framework is originally proposed for shape memory alloy, a kind of crystalline material. We show how to apply this framework for non-crystalline material: concrete. The resulting yield surface and stress-strain relationship are compared with that of experiment reported in the literature.


2021 ◽  
pp. 1-32
Author(s):  
Ankit Agarwal ◽  
Marcial Gonzalez

Abstract We present a constitutive model for particle-binder composites that accounts for finite-deformation kinematics, nonlinear elasto-plasticity without apparent yield, cyclic hysteresis, and progressive stress-softening before the attainment of stable cyclic response. The model is based on deformation mechanisms experimentally observed during quasi-static monotonic and cyclic compression of mock Plastic-Bonded Explosives (PBX) at large strain. An additive decomposition of strain energy into elastic and inelastic parts is assumed, where the elastic response is modeled using Ogden hyperelasticity while the inelastic response is described using yield-surface-free endochronic plasticity based on the concepts of internal variables and of evolution or rate equations. Stress-softening is modeled using two approaches; a discontinuous isotropic damage model to appropriately describe the softening in the overall loading-unloading response, and a material scale function to describe the progressive cyclic softening until cyclic stabilization. A nonlinear multivariate optimization procedure is developed to estimate the elasto-plastic model parameters from nominal stress-strain experimental compression data. Finally, a correlation between model parameters and the unique stress-strain response of mock PBX specimens with differing concentrations of aluminum is identified, thus establishing a relationship between model parameters and material composition.


Author(s):  
Linus Leung ◽  
Josee Perron ◽  
Hani E. Naguib

Constitutive modeling of stress-strain relationship of open-celled PLGA 85/15 foams under compression was studied. A constitutive model for compressive behavior was directly derived from the morphology of a unit cubic cell. These constitutive equations describe the stress-strain relationship as a function of the foam's material properties and cell morphology, such as elastic modulus, yield stress, relative density, cell strut thickness, and cell size. To verify this model, uniaxial compression testing was performed on foam samples. Using the gas foaming/salt leaching method, the samples were prepared by using different foaming parameters such as salt/polymer mass ratio, saturation pressure, and saturation time. The comparisons of theoretical and experimental data demonstrate that the constitutive model using a cubic unit cell accurately describes the behavior of PLGA foams with low relative densities under compression.


2010 ◽  
Vol 152-153 ◽  
pp. 1213-1216
Author(s):  
Wen Huang ◽  
Zhong Wei Huang

A statistical constitutive model, which takes account the effect of strain rate, was presented to describe the stress-strain relationship of brittle fiber bundles. To verify its reliability, tensile tests on two kinds of brittle fibers: glass fiber and SiC fiber, were carried out at different strain rates, and the stress-strain curves were obtained. It was found that the modulus E, the strength and the fracture strain of these fiber bundles all increase with increasing strain rate. The simulated stress-strain curves, derived from the constitutive model, fit the tested results well, which indicates that the model is valid and reliable.


2020 ◽  
Vol 194 ◽  
pp. 05024
Author(s):  
Yanan Tang ◽  
Weidong Song ◽  
Jianxin Fu

The mechanical properties and stress-strain relationship of cemented backfills with different stratified structure have a direct effect on the mining-filling cycle and the mining of adjacent pillars. To obtain the stress-strain evolution curves, the uniaxial compressive strength tests were performed on backfills with stratified numbers of 0, 1, 2 and 3. The deformation of stratified backfill under the compressive load is regarded as a compound of closed deformation of the macroscopic stratified structure and elastic deformation of material. The damage constitutive model of cemented backfills with different stratified structure are established by considering the influence of compacted section. Comparative analysis reveals that the calculated curve based on the established sectional damage constitutive model conforms well to the trial curve. The maximum closed strain of the structural plane has a more significant effect on the mechanical properties of backfill. In the Weibull distribution, with the increase of the parameter m, the peak strength of backfill gradually increases and then reaches to a certain value, and the stress-strain curve gradually becomes steeper, which shows that m is a reflection of the concentration level of micro-unit strength distribution in the backfill..


2017 ◽  
Vol 114 (2) ◽  
Author(s):  
Bambang Piscesa ◽  
Mario M. Attard ◽  
Ali Khajeh Samani ◽  
Sawekchai Tangaramvong

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6206
Author(s):  
Qian Guo ◽  
Wenbin Li ◽  
Wenjin Yao ◽  
Xiaoming Wang ◽  
Changqiang Huang

In this work, quasistatic mechanical compression experiments were used to study the stress–strain relationship of aluminum foam, and the mechanism of the compressive deformation of aluminum foam under quasistatic compression conditions is discussed based on the experimental observations. Since the interactions among cells of the aluminum foam and differences in compressive strength among cells substantially impacted the mechanical properties of the material, the cellular structural parameters, namely the cell size and cell wall thickness, were defined. Along with the mechanism of deformation of a single cell, the influence of structural parameters on the micro failure mechanism and the stress–strain relationship of the aluminum foam material was analyzed. In combination with the factors influencing the mechanical properties of the aluminum foam, a mechanical constitutive model of aluminum foam suitable for multi-density and multi-impact environments that considers cellular structure density was established to predict the complete stress–strain relationship of aluminum foam under a high strain rate. The coupling function of strain rate and temperature in the original model was verified and the parameters were determined by the compression experiments under different strain rates and different temperatures.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chongbang Xu ◽  
Xiaojing Gao ◽  
Kaishun Zhang ◽  
Zhiguo Liu ◽  
Fan Zhao

Swelling of soft rock, such as gypsum rock, is one of the major threats in tunnel engineering, causing structure damages such as floor heave and inward movement of sidewalls during construction and operation. It is of practical significance to study the swelling mechanical behavior of such rocks by tests. Swelling strain tests and swelling stress tests were performed by swelling test apparatus to study the variation of swelling strain with time and the swelling stress-strain relationship for gypsum rock samples, respectively. Three stages of the swelling strain on the time-strain curve of gypsum rock samples were noticed, which are defined as rapid swelling stage, slow swelling stage, and steady stage. And it was further found that the swelling strain caused in the slow swelling stage is of 76% of the total swelling strain. A constitutive model is proposed to describe the stress-strain relationship in swelling considering the swelling deformation and swelling pressure. The proposed model was verified using test data, which shows good agreements in describing the relationship between swelling strain and swelling stress, also in the conditions of maximum swelling strain and maximum swelling stress under lateral restraint situations.


Sign in / Sign up

Export Citation Format

Share Document