Remote Sensing Scene Classification with Multi-task Learning

Author(s):  
Tengfei Gong ◽  
Xiangtao Zheng ◽  
Xiaoqiang Lu
2020 ◽  
Vol 381 ◽  
pp. 298-305 ◽  
Author(s):  
Xuning Liu ◽  
Yong Zhou ◽  
Jiaqi Zhao ◽  
Rui Yao ◽  
Bing Liu ◽  
...  

2020 ◽  
Vol 17 (6) ◽  
pp. 968-972 ◽  
Author(s):  
Tianyu Wei ◽  
Jue Wang ◽  
Wenchao Liu ◽  
He Chen ◽  
Hao Shi

2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


2021 ◽  
Vol 13 (3) ◽  
pp. 433
Author(s):  
Junge Shen ◽  
Tong Zhang ◽  
Yichen Wang ◽  
Ruxin Wang ◽  
Qi Wang ◽  
...  

Remote sensing images contain complex backgrounds and multi-scale objects, which pose a challenging task for scene classification. The performance is highly dependent on the capacity of the scene representation as well as the discriminability of the classifier. Although multiple models possess better properties than a single model on these aspects, the fusion strategy for these models is a key component to maximize the final accuracy. In this paper, we construct a novel dual-model architecture with a grouping-attention-fusion strategy to improve the performance of scene classification. Specifically, the model employs two different convolutional neural networks (CNNs) for feature extraction, where the grouping-attention-fusion strategy is used to fuse the features of the CNNs in a fine and multi-scale manner. In this way, the resultant feature representation of the scene is enhanced. Moreover, to address the issue of similar appearances between different scenes, we develop a loss function which encourages small intra-class diversities and large inter-class distances. Extensive experiments are conducted on four scene classification datasets include the UCM land-use dataset, the WHU-RS19 dataset, the AID dataset, and the OPTIMAL-31 dataset. The experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-arts.


Author(s):  
Yuhua Wang ◽  
Yaxin Hu ◽  
Yuezhu Xu ◽  
Peiyuan Jiao ◽  
Xiangrong Zhang ◽  
...  

Author(s):  
Jie Chen ◽  
Haozhe Huang ◽  
Jian Peng ◽  
Jiawei Zhu ◽  
Li Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document