scholarly journals Gravitational waves from dark Yang-Mills sectors

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
James Halverson ◽  
Cody Long ◽  
Anindita Maiti ◽  
Brent Nelson ◽  
Gustavo Salinas

Abstract Dark Yang-Mills sectors, which are ubiquitous in the string landscape, may be reheated above their critical temperature and subsequently go through a confining first-order phase transition that produces stochastic gravitational waves in the early universe. Taking into account constraints from lattice and from Yang-Mills (center and Weyl) symmetries, we use a phenomenological model to construct an effective potential of the semi quark-gluon plasma phase, from which we compute the gravitational wave signal produced during confinement for numerous gauge groups. The signal is maximized when the dark sector dominates the energy density of the universe at the time of the phase transition. In that case, we find that it is within reach of the next-to-next generation of experiments (BBO, DECIGO) for a range of dark confinement scales near the weak scale.

2018 ◽  
Vol 168 ◽  
pp. 05001 ◽  
Author(s):  
Toshinori Matsui

Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.


2017 ◽  
Vol 4 (5) ◽  
pp. 687-706 ◽  
Author(s):  
Rong-Gen Cai ◽  
Zhoujian Cao ◽  
Zong-Kuan Guo ◽  
Shao-Jiang Wang ◽  
Tao Yang

Abstract The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined with other cosmological probes. The gravitational-wave physics is not only related to gravitation theory, but also is closely tied to fundamental physics, cosmology and astrophysics. In this review article, three kinds of sources of gravitational waves and relevant physics will be discussed, namely gravitational waves produced during the inflation and preheating phases of the Universe, the gravitational waves produced during the first-order phase transition as the Universe cools down and the gravitational waves from the three phases: inspiral, merger and ringdown of a compact binary system, respectively. We will also discuss the gravitational waves as a standard siren to explore the evolution of the Universe.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1541-1544
Author(s):  
ARIEL MÉGEVAND

I discuss the gravitational radiation produced in a first-order phase transition due to the turbulence that is caused by bubble expansion. I compare the cases of deflagration and detonation bubbles.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M. Ahmadvand

Abstract In this paper, we propose a bubble filtering-out mechanism for an asymmetric dark matter scenario during the Peccei-Quinn (PQ) phase transition. Based on a QCD axion model, extended by extra chiral neutrinos, we show that the PQ phase transition can be first order in the parameter space of the model and regarding the PQ symmetry breaking scale, the mechanism can generate PeV-scale heavy neutrinos as a dark matter candidate. Considering a CP-violating source, during the phase transition, discriminating between the neutrino and antineutrino number density, we find the observed dark matter relic abundance, such that the setup can be applied to the first order phase transition with different strengths. We then calculate effective couplings of the QCD axion addressing the strong CP problem within the model. We also study the energy density spectrum of gravitational waves generated from the first order phase transition and show that the signals can be detected by future ground-based detectors such as Einstein Telescope. In particular, for a visible heavy axion case of the model, it is shown that gravitational waves can be probed by DECIGO and BBO interferometers. Furthermore, we discuss the dark matter-standard model neutrino annihilation process as a source for the creation of PeV-scale neutrinos.


2021 ◽  
Vol 2021 (12) ◽  
pp. 039
Author(s):  
Debasish Borah ◽  
Arnab Dasgupta ◽  
Sin Kyu Kang

Abstract We study a dark SU(2) D gauge extension of the standard model (SM) with the possibility of a strong first order phase transition (FOPT) taking place below the electroweak scale in the light of NANOGrav 12.5 yr data. As pointed out recently by the NANOGrav collaboration, gravitational waves (GW) from such a FOPT with appropriate strength and nucleation temperature can explain their 12.5 yr data. We impose a classical conformal invariance on the scalar potential of SU(2) D sector involving only a complex scalar doublet with negligible couplings with the SM Higgs. While a FOPT at sub-GeV temperatures can give rise to stochastic GW around nano-Hz frequencies being in agreement with NANOGrav findings, the SU(2) D vector bosons which acquire masses as a result of the FOPT in dark sector, can also serve as dark matter (DM) in the universe. The relic abundance of such vector DM can be generated in a non-thermal manner from the SM bath via scalar portal mixing. We also discuss future sensitivity of gravitational wave experiments to the model parameter space.


Sign in / Sign up

Export Citation Format

Share Document