scholarly journals Gauge kinetic mixing and dark topological defects

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Takashi Hiramatsu ◽  
Masahiro Ibe ◽  
Motoo Suzuki ◽  
Soma Yamaguchi

Abstract We discuss how the topological defects in the dark sector affect the Standard Model sector when the dark photon has a kinetic mixing with the QED photon. In particular, we consider the dark photon appearing in the successive gauge symmetry breaking, SU(2) → U(1) → ℤ2, where the remaining ℤ2 is the center of SU(2). In this model, the monopole is trapped into the cosmic strings and forms the so-called bead solution. As we will discuss, the dark cosmic string induces the QED magnetic flux inside the dark string through the kinetic mixing. The dark monopole, on the other hand, does not induce the QED magnetic flux in the U(1) symmetric phase, even in the presence of the kinetic mixing. Finally, we show that the dark bead solution induces a spherically symmetric QED magnetic flux through the kinetic mixing. The induced flux looks like the QED magnetic monopole viewed from a distance, although QED satisfies the Bianchi identity everywhere, which we call a pseudo magnetic monopole.

2015 ◽  
Vol 30 (18) ◽  
pp. 1550089 ◽  
Author(s):  
A. L. dos Santos ◽  
D. Hadjimichef

An extension of the Standard Model (SM) is studied, in which two new vector bosons are introduced, a first boson Z' coupled to the SM by the usual minimal coupling, producing an enlarged gauge sector in the SM. The second boson A' field, in the dark sector of the model, remains massless and originates a dark photon γ'. A hybrid mixing scenario is considered based on a combined Higgs and Stueckelberg mechanisms. In a Compton-like process, a photon scattered by a weakly interacting massive particles (WIMP) is converted into a dark photon. This process is studied, in an astrophysical application obtaining an estimate of the impact on stellar cooling of white dwarfs and neutron stars.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
S. H. Seo ◽  
Y. D. Kim

Abstract Dark photons are well motivated hypothetical dark sector particles that could account for observations that cannot be explained by the standard model of particle physics. A search for dark photons that are produced by an electron beam striking a thick tungsten target and subsequently interact in a 3 kiloton-scale neutrino detector in Yemilab, a new underground lab in Korea, is proposed. Dark photons can be produced by “darkstrahlung” or by oscillations from ordinary photons produced in the target and detected by their visible decays, “absorption” or by their oscillation to ordinary photons. By detecting the absorption process or the oscillation-produced photons, a world’s best sensitivity for measurements of the dark-photon kinetic mixing parameter of ϵ2> 1.5 × 10−13(6.1 × 10−13) at the 95% confidence level (C.L.) could be obtained for dark photon masses between 80 eV and 1 MeV in a year-long exposure to a 100 MeV–100 kW electron beam with zero (103) background events. In parallel, the detection of e+e− pairs from decays of dark photons with mass between 1 MeV and ∼86 MeV would have sensitivities of ϵ2>$$ \mathcal{O}\left({10}^{-17}\right)\left(\mathcal{O}\left({10}^{-16}\right)\right) $$ O 10 − 17 O 10 − 16 at the 95% C.L. with zero (103) background events. This is comparable to that of the Super-K experiment under the same zero background assumption.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masahiro Ibe ◽  
Shin Kobayashi ◽  
Keiichi Watanabe

Abstract The asymmetric dark matter (ADM) scenario solves the baryon-dark matter coincidence problem when the dark matter (DM) mass is of $$ \mathcal{O}(1) $$ O 1 GeV. Composite ADM models based on QCD-like strong dynamics are particularly motivated since the strong dynamics naturally provides the DM mass of $$ \mathcal{O}(1) $$ O 1 GeV and the large annihilation cross-section simultaneously. In those models, the sub-GeV dark photon often plays an essential role in transferring the excessive entropy in the dark sector into the visible sector, i.e., the Standard Model sector. This paper constructs a chiral composite ADM model where the U(1)D gauge symmetry is embedded into the chiral flavor symmetry. Due to the dynamical breaking of the chiral flavor symmetry, the model naturally provides the masses of the dark photon and the dark pions in the sub-GeV range, both of which play crucial roles for a successful ADM model.


2017 ◽  
Vol 32 (23n24) ◽  
pp. 1750138 ◽  
Author(s):  
Min He ◽  
Xiao-Gang He ◽  
Cheng-Kai Huang

One of the interesting portals linking a dark sector and the Standard Model (SM) is the kinetic mixing between the SM [Formula: see text] field with a new dark photon [Formula: see text] from a [Formula: see text] gauge interaction. Stringent limits have been obtained for the kinetic mixing parameter [Formula: see text] through various processes. In this work, we study the possibility of searching for a dark photon interaction at a circular [Formula: see text] collider through the process [Formula: see text]. We find that the constraint on [Formula: see text] for dark photon mass in the few tens of GeV range, assuming that the [Formula: see text] invariant mass can be measured to an accuracy of 0.5% [Formula: see text], can be better than [Formula: see text] for the proposed CEPC with a 10-year running at [Formula: see text] (statistic) level, and better than [Formula: see text] for FCC-ee with even just one-year running at [Formula: see text], better than the LHCb, ATLAS, CMS experiments and other facilities can do in a similar dark photon mass range. For FCC-ee, running at [Formula: see text], the constraint can be even better.


2019 ◽  
Vol 212 ◽  
pp. 06002
Author(s):  
Elena Perez del Rio

During the last years several Dark Sector Models have been proposed in order to address striking and puzzling astrophysical observations which fail standard interpretations. In the minimal case a new vector particle, the so called dark photon or U-boson, is introduced, with small coupling with Standard Model particles. Also, the existence of a dark Higgs boson h’ is postulated, in analogy with the Standard Model, to give mass to the U-boson through the Spontaneous Symmetry Breaking mechanism. The discovery of such a Dark Force Mediator would belong to a new field of Physics Beyond the Standard Model. The KLOE experiment, working on the DAΦNE e+e− collider in Frascati, searched for the existence of the U-boson in a quite complete way, investigating several different processes and final states. Tight limits on the model parameters have been set at 90%CL. Further improvements are expected in terms of sensitivity and discovery potential with the new KLOE-2 detector working on the improved DAΦNE e+e− collider, which has collected more than 5 fb−1.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Amin Aboubrahim ◽  
Michael Klasen ◽  
Pran Nath

Abstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anson Hook ◽  
Gustavo Marques-Tavares ◽  
Clayton Ristow

Abstract We present the supernova constraints on an axion-photon-dark photon coupling, which can be the leading coupling to dark sector models and can also lead to dramatic changes to axion cosmology. We show that the supernova bound on this coupling has two unusual features. One occurs because the scattering that leads to the trapping regime converts axions and dark photons into each other. Thus, if one of the two new particles is sufficiently massive, both production and scattering become suppressed and the bounds from bulk emission and trapped (area) emission both weaken exponentially and do not intersection The other unusual feature occurs because for light dark photons, longitudinal modes couple more weakly than transverse modes do. Since the longitudinal mode is more weakly coupled, it can still cause excessive cooling even if the transverse mode is trapped. Thus, the supernova constraints for massive dark photons look like two independent supernova bounds super-imposed on top of each other.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Soo-Min Choi ◽  
Hyun Min Lee ◽  
Bin Zhu

Abstract We consider a novel mechanism to realize exothermic dark matter with dark mesons in the limit of approximate flavor symmetry in a dark QCD. We introduce a local dark U(1)′ symmetry to communicate between dark mesons and the Standard Model via Z′ portal by partially gauging the dark flavor symmetry with flavor-dependent charges for cancelling chiral anomalies in the dark sector. After the dark local U(1)′ is broken spontaneously by the VEV of a dark Higgs, there appear small mass splittings between dark quarks, consequently, leading to small split masses for dark mesons, required to explain the electron recoil excess in XENON1T by the inelastic scattering between dark mesons and electron. We propose a concrete benchmark model for split dark mesons based on SU(3)L× SU(3)R/SU(3)V flavor symmetry and SU(Nc) color group and show that there exists a parameter space making a better fit to the XENON1T data with two correlated peaks from exothermic processes and satisfying the correct relic density, current experimental and theoretical constraints.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto Contino ◽  
Kevin Max ◽  
Rashmish K. Mishra

Abstract We consider the possible existence of a SM-neutral and light dark sector coupled to the visible sector through irrelevant portal interactions. Scenarios of this kind are motivated by dark matter and arise in various extensions of the Standard Model. We characterize the dark dynamics in terms of one ultraviolet scale Λuv, at which the exchange of heavy mediator fields generates the portal operators, and by one infrared scale ΛIR, setting the mass gap. At energies ΛIR « E « Λuv the dark sector behaves like a conformal field theory and its phenomenology can be studied model independently. We derive the constraints set on this scenario by high- and low-energy laboratory experiments and by astrophysical observations. Our results are conservative and serve as a minimum requirement that must be fulfilled by the broad class of models satisfying our assumptions, of which we give several examples. The experimental constraints are derived in a manner consistent with the validity of the effective field theory used to define the portal interactions. We find that high-energy colliders give the strongest bounds and exclude UV scales up to a few TeV, but only in specific ranges of the IR scale. The picture emerging from current searches can be taken as a starting point to design a future experimental strategy with broader sensitivity.


2016 ◽  
Vol 31 (18) ◽  
pp. 1630027
Author(s):  
Ikuo S. Sogami

With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inflationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.


Sign in / Sign up

Export Citation Format

Share Document