scholarly journals Invariant vector means and complementability of Banach spaces in their second duals

Author(s):  
Radosław Łukasik

AbstractLet X be a Banach space. Fix a torsion-free commutative and cancellative semigroup S whose torsion-free rank is the same as the density of $$X^{**}$$ X ∗ ∗ . We then show that X is complemented in $$X^{**}$$ X ∗ ∗ if and only if there exists an invariant mean $$M:\ell _\infty (S,X)\rightarrow X$$ M : ℓ ∞ ( S , X ) → X . This improves upon previous results due to Bustos Domecq (J Math Anal Appl 275(2):512–520, 2002), Kania (J Math Anal Appl 445:797–802, 2017), Goucher and Kania (Studia Math 260:91–101, 2021).

1985 ◽  
Vol 26 (2) ◽  
pp. 107-113 ◽  
Author(s):  
E. Jespers ◽  
J. Krempa ◽  
P. Wauters

We give a complete description of the Brown–McCoy radical of a semigroup ring R[S], where R is an arbitrary associative ring and S is a commutative cancellative semigroup; in particular we obtain the answer to a question of E. Puczyłowski stated in [11]Throughout this note all rings R are associative with unity 1; all semigroups S are commutative and cancellative with unity. Note that the condition that R and S have a unity can be dropped (cf. [8]). The quotient group of S is denoted by Q(S). We say that S is torsion free (resp. has torsion free rank n) if Q(S) is torsion free (resp. has torsion free rank n). The Brown–McCoy radical (i.e. the upper radical determined by the class of all simple rings with unity) of a ring R is denoted by u(R). We refer to [2] for further detail on radicals and in particular on the Brown–McCoy radical.First we state some well-known results and a preliminary lemma. Let R and T be rings with the same unity such that R ⊂ T. Then T is said to be a normalizing extension of R if T = Rx1+…+Rxn for certain elements x1, …, xn of T and Rxi = xiR for all i such that 1 ∨i∨n. If all xi are central in T, then we say that T is a central normalizing extension of R.


2001 ◽  
Vol 30 (2) ◽  
pp. 373-404 ◽  
Author(s):  
Takashi OKUYAMA

2018 ◽  
Vol 61 (1) ◽  
pp. 295-304 ◽  
Author(s):  
R. R. Andruszkiewicz ◽  
M. Woronowicz

AbstractThe relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.


2017 ◽  
Vol 219 (2) ◽  
pp. 817-834 ◽  
Author(s):  
Martin R. Bridson ◽  
Dessislava H. Kochloukova

2010 ◽  
Vol 83 (2) ◽  
pp. 231-240 ◽  
Author(s):  
TROND A. ABRAHAMSEN ◽  
OLAV NYGAARD

AbstractWe define and study λ-strict ideals in Banach spaces, which for λ=1 means strict ideals. Strict u-ideals in their biduals are known to have the unique ideal property; we prove that so also do λ-strict u-ideals in their biduals, at least for λ>1/2. An open question, posed by Godefroy et al. [‘Unconditional ideals in Banach spaces’, Studia Math.104 (1993), 13–59] is whether the Banach space X is a u-ideal in Ba(X), the Baire-one functions in X**, exactly when κu(X)=1; we prove that if κu(X)=1 then X is a strict u-ideal in Ba (X) , and we establish the converse in the separable case.


2001 ◽  
Vol 55 (2) ◽  
pp. 301-320 ◽  
Author(s):  
Takashi OKUYAMA

1979 ◽  
Vol 27 (3) ◽  
pp. 284-288 ◽  
Author(s):  
Robert O. Stanton

AbstractLet N be a direct summand of a module which is a direct sum of modules of torsion-free rank one over a discrete valuation ring. Then there is a torsion module T such that N⊕T is also a direct sum of modules of torsion-free rank one.


2009 ◽  
Vol 08 (05) ◽  
pp. 617-627
Author(s):  
ULRICH ALBRECHT ◽  
SIMION BREAZ

This paper investigates to which extent a self-small mixed Abelian group G of finite torsion-free rank is determined by the groups Hom (G,C) where C is chosen from a suitable class [Formula: see text] of Abelian groups. We show that G is determined up to quasi-isomorphism if [Formula: see text] is the class of all self-small mixed groups C with r0(C) ≤ r0(G). Several related results are given, and the dual problem of orthogonal classes is investigated.


Sign in / Sign up

Export Citation Format

Share Document