The polynomial Daugavetian index of a complex Banach space

2018 ◽  
Vol 112 (4) ◽  
pp. 407-416
Author(s):  
Elisa R. Santos
1990 ◽  
Vol 32 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Muneo Chō

In this paper we shall examine the relationship between the numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is called state if ∥F∥ = F(I) = 1. When x ε X with ∥x∥ = 1, we denoteD(x) = {f ε X*:∥f∥ = f(x) = l}.


2018 ◽  
Vol 10 (1) ◽  
pp. 206-212
Author(s):  
T.V. Vasylyshyn

A $*$-polynomial is a function on a complex Banach space $X,$ which is a sum of so-called $(p,q)$-polynomials. In turn, for non-negative integers $p$ and $q,$ a $(p,q)$-polynomial is a function on $X,$ which is the restriction to the diagonal of some mapping, defined on the Cartesian power $X^{p+q},$ which is linear with respect to every of its first $p$ arguments and antilinear with respect to every of its other $q$ arguments. The set of all continuous $*$-polynomials on $X$ form an algebra, which contains the algebra of all continuous polynomials on $X$ as a proper subalgebra. So, completions of this algebra with respect to some natural norms are wider classes of functions than algebras of holomorphic functions. On the other hand, due to the similarity of structures of $*$-polynomials and polynomials, for the investigation of such completions one can use the technique, developed for the investigation of holomorphic functions on Banach spaces. We investigate the Frechet algebra of functions on a complex Banach space, which is the completion of the algebra of all continuous $*$-polynomials with respect to the countable system of norms, equivalent to norms of the uniform convergence on closed balls of the space. We establish some properties of shift operators (which act as the addition of some fixed element of the underlying space to the argument of a function) on this algebra. In particular, we show that shift operators are well-defined continuous linear operators. Also we prove some estimates for norms of values of shift operators. Using these results, we investigate one special class of functions from the algebra, which is important in the description of the spectrum (the set of all maximal ideals) of the algebra.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Zhaojun Wu ◽  
Zuxing Xuan

The main purpose of this paper is to investigate the characteristic functions and Borel exceptional values ofE-valued meromorphic functions from theℂR={z:|z|<R},  0<R≤+∞to an infinite-dimensional complex Banach spaceEwith a Schauder basis. Results obtained extend the relative results by Xuan, Wu and Yang, Bhoosnurmath, and Pujari.


1973 ◽  
Vol 25 (3) ◽  
pp. 468-474 ◽  
Author(s):  
A. J. B. Potter

Let Y be a complex Banach space, U an open subset of Y, f a mapping of U into Y. Then f is said to be complex analytic if for each pair of elements x and y of Y with x in U, the function f(x + ξy) of the single complex variable ξ is analytic in ξ on some neighbourhood of the origin.


2018 ◽  
Vol 70 (3) ◽  
pp. 797-811
Author(s):  
Thiago R Alves ◽  
Geraldo Botelho

Abstract In this paper, we develop a method to construct holomorphic functions that exist only on infinite dimensional spaces. The following types of holomorphic functions f:U→ℂ on some open subsets U of an infinite dimensional complex Banach space are constructed: (1) f is bounded holomorphic on U and is continuously, but not uniformly continuously extended to U¯; (2) f is continuous on U¯ and holomorphic of bounded type on U, but f is unbounded on U; (3) f is holomorphic of bounded type on U and f cannot be continuously extended to U¯. The technique we develop is powerful enough to provide, in the cases (2) and (3) above, large algebraic structures formed by such functions (up to the zero function, of course).


2019 ◽  
Vol 38 (3) ◽  
pp. 133-140
Author(s):  
Abdelaziz Tajmouati ◽  
Abdeslam El Bakkali ◽  
Ahmed Toukmati

In this paper we introduce and study the M-hypercyclicity of strongly continuous cosine function on separable complex Banach space, and we give the criteria for cosine function to be M-hypercyclic. We also prove that every separable infinite dimensional complex Banach space admits a uniformly continuous cosine function.


2002 ◽  
Vol 54 (6) ◽  
pp. 1165-1186 ◽  
Author(s):  
Oscar Blasco ◽  
José Luis Arregui

AbstractLet X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.


Author(s):  
Douglas Mupasiri

AbstractWe give a characterization of complex extreme measurable selections for a suitable set-valued map. We use this result to obtain necessary and sufficient conditions for a function to be a complex extreme point of the closed unit ball of Lp (ω, Σ, ν X), where (ω, σ, ν) is any positive, complete measure space, X is a separable complex Banach space, and 0 < p < ∞.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Jianfei Wang

LetBXbe the unit ball in a complex Banach spaceX. AssumeBXis homogeneous. The generalization of the Schwarz-Pick estimates of partial derivatives of arbitrary order is established for holomorphic mappings from the unit ballBntoBXassociated with the Carathéodory metric, which extend the corresponding Chen and Liu, Dai et al. results.


Sign in / Sign up

Export Citation Format

Share Document