scholarly journals Second Order Regularity for a Linear Elliptic System Having BMO Coefficients

Author(s):  
Gioconda Moscariello ◽  
Giulio Pascale

AbstractWe consider linear elliptic systems whose prototype is $$\begin{aligned} div \, \Lambda \left[ \,\exp (-|x|) - \log |x|\,\right] I \, Du = div \, F + g \text { in}\, B. \end{aligned}$$ d i v Λ exp ( - | x | ) - log | x | I D u = d i v F + g in B . Here B denotes the unit ball of $$\mathbb {R}^n$$ R n , for $$n > 2$$ n > 2 , centered in the origin, I is the identity matrix, F is a matrix in $$W^{1, 2}(B, \mathbb {R}^{n \times n})$$ W 1 , 2 ( B , R n × n ) , g is a vector in $$L^2(B, \mathbb {R}^n)$$ L 2 ( B , R n ) and $$\Lambda $$ Λ is a positive constant. Our result reads that the gradient of the solution $$u \in W_0^{1, 2}(B, \mathbb {R}^n)$$ u ∈ W 0 1 , 2 ( B , R n ) to Dirichlet problem for system (0.1) is weakly differentiable provided the constant $$\Lambda $$ Λ is not large enough.

1999 ◽  
Vol 6 (4) ◽  
pp. 395-400
Author(s):  
M. Usanetashvili

Abstract The solvability of the first boundary value problem is investigated for a second order elliptic system with degeneration on the entire domain boundary.


Author(s):  
A.O. Bagapsh

We study the properties of complex-valued functions of a complex variable, whose real and imaginary parts satisfy a second-order skew-symmetric strongly elliptic system with constant real coefficients in the plane. The behavior of such functions and their dilatations near singular points is investigated and the dependence of the type of the singularity on the form of the Laurent expansion of the function under consideration is established. The principle of the argument is established for the functions with poles under study, analogs of the Ruschet and Hurwitz theorems are proved


2004 ◽  
Vol 76 (1) ◽  
pp. 125-140 ◽  
Author(s):  
J. V. Goncalves ◽  
C. A. P. Santos

AbstractIn this paper we study the existence and uniqueness of positive solutions of boundary vlue problems for continuous semilinear perturbations, say f: [0, 1) × (0, ∞) → (0, ∞), of class of quasilinear operators which represent, for instance, the radial form of the Dirichlet problem on the unit ball of RN for the operators: p-Laplacian (1 < p < ∞) ad k-Hessian (1 ≤ k ≤ N). As a key feature, f (r, u) is possibly singular at r = 1 or u =0, Our approach exploits fixed point arguments and the Shooting Method.


2018 ◽  
Vol 149 (04) ◽  
pp. 1037-1046
Author(s):  
A. Aghajani ◽  
C. Cowan

AbstractWe examine the elliptic system given by$$\left\{ {\matrix{ {-\Delta u = \lambda f(v)} \hfill &amp; {{\rm in }\,\,\Omega ,} \hfill \cr {-\Delta v = \gamma f(u)} \hfill &amp; {{\rm in }\,\,\Omega ,} \hfill \cr {u = v = 0} \hfill &amp; {{\rm on }\,\,\partial \Omega ,} \hfill \cr } } \right.$$where λ, γ are positive parameters, Ω is a smooth bounded domain in ℝNandfis aC2positive, nondecreasing and convex function in [0, ∞) such thatf(t)/t→ ∞ ast→ ∞. Assuming$$0 < \tau _-: = \mathop {\lim \inf }\limits_{t\to \infty } \displaystyle{{f(t){f}^{\prime \prime}(t)} \over {{f}^{\prime}{(t)}^2}} \les \tau _ + : = \mathop {\lim \sup }\limits_{t\to \infty } \displaystyle{{f(t){f}^{\prime \prime}(t)} \over {{f}^{\prime}{(t)}^2}} \les 2,$$we show that the extremal solution (u*,v*) associated with the above system is smooth provided thatN&lt; (2α*(2 − τ+) + 2τ+)/(τ+)max{1, τ+}, where α*&gt; 1 denotes the largest root of the second-order polynomial$$[P_{f}(\alpha,\tau_{-},\tau_{+}):=(2-\tau_{-})^{2} \alpha^{2}- 4(2-\tau_{+})\alpha+4(1-\tau_{+}).]$$As a consequence,u*,v* ∈L∞(Ω) forN&lt; 5. Moreover, if τ−= τ+, thenu*,v* ∈L∞(Ω) forN&lt; 10.


2008 ◽  
Vol 15 (4) ◽  
pp. 793-798
Author(s):  
Mikheil Usanetashvili

Abstract The solvability of the first boundary value problem is studied for a second order elliptic system with degeneration on the entire boundary of a multidimensional domain.


Sign in / Sign up

Export Citation Format

Share Document