scholarly journals Exponential Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields

2000 ◽  
Vol 10 (6) ◽  
pp. 465-487 ◽  
Author(s):  
D. Grigoriev ◽  
A. Razborov
2021 ◽  
Vol 58 (3) ◽  
pp. 319-334
Author(s):  
Huaning Liu ◽  
Yinyin Yang

In cryptography one needs pseudorandom sequences whose short subsequences are also pseudorandom. To handle this problem, Dartyge, Gyarmati and Sárközy introduced weighted measures of pseudorandomness of binary sequences. In this paper we continue the research in this direction. We introduce weighted pseudorandom measure for multidimensional binary lattices and estimate weighted pseudorandom measure for truly random binary lattices. We also give lower bounds for weighted measures of even order and present an example by using the quadratic character of finite fields.


Author(s):  
Eric Allender ◽  
V. Arvind ◽  
Rahul Santhanam ◽  
Fengming Wang

The notion of probabilistic computation dates back at least to Turing, who also wrestled with the practical problems of how to implement probabilistic algorithms on machines with, at best, very limited access to randomness. A more recent line of research, known as derandomization, studies the extent to which randomness is superfluous. A recurring theme in the literature on derandomization is that probabilistic algorithms can be simulated quickly by deterministic algorithms, if one can obtain impressive (i.e. superpolynomial, or even nearly exponential) circuit size lower bounds for certain problems. In contrast to what is needed for derandomization, existing lower bounds seem rather pathetic. Here, we present two instances where ‘pathetic’ lower bounds of the form n 1+ ϵ would suffice to derandomize interesting classes of probabilistic algorithms. We show the following: — If the word problem over S 5 requires constant-depth threshold circuits of size n 1+ ϵ for some ϵ >0, then any language accepted by uniform polynomial size probabilistic threshold circuits can be solved in subexponential time (and, more strongly, can be accepted by a uniform family of deterministic constant-depth threshold circuits of subexponential size). — If there are no constant-depth arithmetic circuits of size n 1+ ϵ for the problem of multiplying a sequence of n  3×3 matrices, then, for every constant d , black-box identity testing for depth- d arithmetic circuits with bounded individual degree can be performed in subexponential time (and even by a uniform family of deterministic constant-depth AC 0 circuits of subexponential size).


Author(s):  
Somphong Jitman ◽  
Aunyarut Bunyawat ◽  
Supanut Meesawat ◽  
Arithat Thanakulitthirat ◽  
Napat Thumwanit

A family of good punctured polynomials is introduced. The complete characterization and enumeration of such polynomials are given over the binary fieldF2. Over a nonbinary finite fieldFq, the set of good punctured polynomials of degree less than or equal to2are completely determined. Forn≥3, constructive lower bounds of the number of good punctured polynomials of degreenoverFqare given.


2015 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Ali H. Hakami

Let $m$ be a positive integer with $m < p/2$ and $p$ is a prime. Let $\mathbb{F}_q$ be the finite field in $q = p^f$ elements, $Q({\mathbf{x}})$ be a nonsinqular quadratic form over $\mathbb{F}_q$ with $q$ odd, $V$ be the set of points in $\mathbb{F}_q^n$ satisfying the equation $Q({\mathbf{x}}) = 0$ in which the variables are restricted to a box of points of the type\[\mathcal{B}(m) = \left\{ {{\mathbf{x}} \in \mathbb{F}_q^n \left| {x_i  = \sum\limits_{j = 1}^f {x_{ij} \xi _j } ,\;\left| {x_{ij} } \right| < m,\;1 \leqslant i \leqslant n,\;1 \leqslant j \leqslant f} \right.} \right\},\]where $\xi _1 , \ldots ,\xi _f$ is a basis for $\mathbb{F}_q$ over $\mathbb{F}_p$ and $n > 2$ even. Set $\Delta  = \det Q$ such that $\chi \left( {( - 1)^{n/2} \Delta } \right) = 1.$ We shall motivate work of (Cochrane, 1986) to obtain lower bounds on $m,$ size of the box $\mathcal{B},$ so that $\mathcal{B} \cap V$ is nonempty. For this we show that the box $\mathcal{B}(m)$ contains a zero of $Q({\mathbf{x}})$ provided that $m \geqslant p^{1/2}.$ We also show that the box $\mathcal{B}(m)$ contains $n$ linearly independent zeros of $Q({\mathbf{x}})$ provided that $m \geqslant 2^{n/2} p^{1/2} .$


10.37236/474 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Kang Wu ◽  
Wenlong Su ◽  
Haipeng Luo ◽  
Xiaodong Xu

Generalized Paley graphs are cyclic graphs constructed from quadratic or higher residues of finite fields. Using this type of cyclic graphs to study the lower bounds for classical Ramsey numbers, has high computing efficiency in both looking for parameter sets and computing clique numbers. We have found a new generalization of generalized Paley graphs, i.e. automorphism cyclic graphs, also having the same advantages. In this paper we study the properties of the parameter sets of automorphism cyclic graphs, and develop an algorithm to compute the order of the maximum independent set, based on which we get new lower bounds for $8$ classical Ramsey numbers: $R(3,22) \geq 131$, $R(3,23) \geq 137$, $R(3,25) \geq 154$, $R(3,28) \geq 173$, $R(3,29) \geq 184$, $R(3,30) \geq 190$, $R(3,31) \geq 199$, $R(3,32) \geq 214$. Furthermore, we also get $R(5,23) \geq 521$ based on $R(3,22) \geq 131$. These nine results above improve their corresponding best known lower bounds.


Author(s):  
Chaoyun Li ◽  
Qingju Wang

Near-MDS matrices provide better trade-offs between security and efficiency compared to constructions based on MDS matrices, which are favored for hardwareoriented designs. We present new designs of lightweight linear diffusion layers by constructing lightweight near-MDS matrices. Firstly generic n×n near-MDS circulant matrices are found for 5 ≤ n ≤9. Secondly, the implementation cost of instantiations of the generic near-MDS matrices is examined. Surprisingly, for n = 7, 8, it turns out that some proposed near-MDS circulant matrices of order n have the lowest XOR count among all near-MDS matrices of the same order. Further, for n = 5, 6, we present near-MDS matrices of order n having the lowest XOR count as well. The proposed matrices, together with previous construction of order less than five, lead to solutions of n×n near-MDS matrices with the lowest XOR count over finite fields F2m for 2 ≤ n ≤ 8 and 4 ≤ m ≤ 2048. Moreover, we present some involutory near-MDS matrices of order 8 constructed from Hadamard matrices. Lastly, the security of the proposed linear layers is studied by calculating lower bounds on the number of active S-boxes. It is shown that our linear layers with a well-chosen nonlinear layer can provide sufficient security against differential and linear cryptanalysis.


Sign in / Sign up

Export Citation Format

Share Document