scholarly journals Positive Energy Representations of the Loop Groups of Non-Simply Connected Lie Groups

1999 ◽  
Vol 207 (2) ◽  
pp. 307-339 ◽  
Author(s):  
Valerio Toledano Laredo
Author(s):  
Lorenzo Panebianco

AbstractWe construct and study solitonic representations of the conformal net associated to some vacuum Positive Energy Representation (PER) of a loop group LG. For the corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound. As an intermediate result, we show that a Positive Energy Representation of a loop group LG can be extended to a PER of $$H^{s}(S^1,G)$$ H s ( S 1 , G ) for $$s>3/2$$ s > 3 / 2 , where G is any compact, simple and simply connected Lie group. We also show the existence of the exponential map of the semidirect product $$LG \rtimes R$$ L G ⋊ R , with R a one-parameter subgroup of $$\mathrm{Diff}_+(S^1)$$ Diff + ( S 1 ) , and we compute the adjoint action of $$H^{s+1}(S^1,G)$$ H s + 1 ( S 1 , G ) on the stress energy tensor.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Giovanni Bazzoni ◽  
Alberto Raffero

Motivated by known results in locally conformal symplectic geometry, we study different classes of G 2 -structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G 2 -structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G 2 -structures.


2001 ◽  
Vol 131 (3) ◽  
pp. 487-494 ◽  
Author(s):  
EBERHARD KANIUTH ◽  
AJAY KUMAR

We prove an analogue of Hardy's Theorem for Fourier transform pairs in ℝ for arbitrary simply connected nilpotent Lie groups, thus extending earlier work on ℝn and the Heisenberg groups ℍn.


Sign in / Sign up

Export Citation Format

Share Document