r-Harmonic and Complex Isoparametric Functions on the Lie Groups $${{\mathbb {R}}}^m \ltimes {{\mathbb {R}}}^n$$ and $${{\mathbb {R}}}^m \ltimes \mathrm {H}^{2n+1}$$
Abstract In this paper we introduce the notion of complex isoparametric functions on Riemannian manifolds. These are then employed to devise a general method for constructing proper r-harmonic functions. We then apply this to construct the first known explicit proper r-harmonic functions on the Lie group semidirect products $${{\mathbb {R}}}^m \ltimes {{\mathbb {R}}}^n$$ R m ⋉ R n and $${{\mathbb {R}}}^m \ltimes \mathrm {H}^{2n+1}$$ R m ⋉ H 2 n + 1 , where $$\mathrm {H}^{2n+1}$$ H 2 n + 1 denotes the classical $$(2n+1)$$ ( 2 n + 1 ) -dimensional Heisenberg group. In particular, we construct such examples on all the simply connected irreducible four-dimensional Lie groups.