scholarly journals The spinor and tensor fields with higher spin on spaces of constant curvature

Author(s):  
Yasushi Homma ◽  
Takuma Tomihisa

AbstractIn this article, we give all the Weitzenböck-type formulas among the geometric first-order differential operators on the spinor fields with spin $$j+1/2$$ j + 1 / 2 over Riemannian spin manifolds of constant curvature. Then, we find an explicit factorization formula of the Laplace operator raised to the power $$j+1$$ j + 1 and understand how the spinor fields with spin $$j+1/2$$ j + 1 / 2 are related to the spinors with lower spin. As an application, we calculate the spectra of the operators on the standard sphere and clarify the relation among the spinors from the viewpoint of representation theory. Next we study the case of trace-free symmetric tensor fields with an application to Killing tensor fields. Lastly we discuss the spinor fields coupled with differential forms and give a kind of Hodge–de Rham decomposition on spaces of constant curvature.

2011 ◽  
Vol 2011 ◽  
pp. 1-27 ◽  
Author(s):  
Tim McGraw ◽  
Takamitsu Kawai ◽  
Inas Yassine ◽  
Lierong Zhu

The challenge of tensor field visualization is to provide simple and comprehensible representations of data which vary both directionallyandspatially. We explore the use of differential operators to extract features from tensor fields. These features can be used to generate skeleton representations of the data that accurately characterize the global field structure. Previously, vector field operators such as gradient, divergence, and curl have previously been used to visualize of flow fields. In this paper, we use generalizations of these operators to locate and classify tensor field degenerate points and to partition the field into regions of homogeneous behavior. We describe the implementation of our feature extraction and demonstrate our new techniques on synthetic data sets of order 2, 3 and 4.


1998 ◽  
Vol 15 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Johanna Erdmenger ◽  
Hugh Osborn

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Venkateswaran P. Krishnan ◽  
Vladimir A. Sharafutdinov

<p style='text-indent:20px;'>For an integer <inline-formula><tex-math id="M1">\begin{document}$ r\ge0 $\end{document}</tex-math></inline-formula>, we prove the <inline-formula><tex-math id="M2">\begin{document}$ r^{\mathrm{th}} $\end{document}</tex-math></inline-formula> order Reshetnyak formula for the ray transform of rank <inline-formula><tex-math id="M3">\begin{document}$ m $\end{document}</tex-math></inline-formula> symmetric tensor fields on <inline-formula><tex-math id="M4">\begin{document}$ {{\mathbb R}}^n $\end{document}</tex-math></inline-formula>. Roughly speaking, for a tensor field <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula>, the order <inline-formula><tex-math id="M6">\begin{document}$ r $\end{document}</tex-math></inline-formula> refers to <inline-formula><tex-math id="M7">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-integrability of higher order derivatives of the Fourier transform <inline-formula><tex-math id="M8">\begin{document}$ \widehat f $\end{document}</tex-math></inline-formula> over spheres centered at the origin. Certain differential operators <inline-formula><tex-math id="M9">\begin{document}$ A^{(m,r,l)}\ (0\le l\le r) $\end{document}</tex-math></inline-formula> on the sphere <inline-formula><tex-math id="M10">\begin{document}$ {{\mathbb S}}^{n-1} $\end{document}</tex-math></inline-formula> are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any <inline-formula><tex-math id="M11">\begin{document}$ r $\end{document}</tex-math></inline-formula> although the volume of calculations grows fast with <inline-formula><tex-math id="M12">\begin{document}$ r $\end{document}</tex-math></inline-formula>. The algorithm is realized for small values of <inline-formula><tex-math id="M13">\begin{document}$ r $\end{document}</tex-math></inline-formula> and Reshetnyak formulas of orders <inline-formula><tex-math id="M14">\begin{document}$ 0,1,2 $\end{document}</tex-math></inline-formula> are presented in an explicit form.</p>


2011 ◽  
Vol 26 (16) ◽  
pp. 1183-1196 ◽  
Author(s):  
I. L. BUCHBINDER ◽  
V. A. KRYKHTIN ◽  
P. M. LAVROV

We study a possibility of Lagrangian formulation for free massive higher spin bosonic totally symmetric tensor field on the background manifold characterizing by the arbitrary metric, vector and third-rank tensor fields in the framework of BRST approach. Assuming analytical dependence on the mass, curvatures and the other background fields in the Lagrangian and using the most general linearized ansatz for transversality condition, we prove that the consistent formulation is possible only in constant curvature space and that there is only a trivial possibility to include the vector and third-rank tensor in the theory. This result finally proves that the consistent Lagrangian formulation at the conditions under consideration is possible only in constant curvature Riemann space.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 830
Author(s):  
Evgeniya V. Goloveshkina ◽  
Leonid M. Zubov

The concept of a spherically symmetric second-rank tensor field is formulated. A general representation of such a tensor field is derived. Results related to tensor analysis of spherically symmetric fields and their geometric properties are presented. Using these results, a formulation of the spherically symmetric problem of the nonlinear theory of dislocations is given. For an isotropic nonlinear elastic material with an arbitrary spherically symmetric distribution of dislocations, this problem is reduced to a nonlinear boundary value problem for a system of ordinary differential equations. In the case of an incompressible isotropic material and a spherically symmetric distribution of screw dislocations in the radial direction, an exact analytical solution is found for the equilibrium of a hollow sphere loaded from the outside and from the inside by hydrostatic pressures. This solution is suitable for any models of an isotropic incompressible body, i. e., universal in the specified class of materials. Based on the obtained solution, numerical calculations on the effect of dislocations on the stress state of an elastic hollow sphere at large deformations are carried out.


1991 ◽  
Vol 38 (1) ◽  
Author(s):  
B.V. Dekster ◽  
J.B. Wilker

Sign in / Sign up

Export Citation Format

Share Document