lagrangian formulation
Recently Published Documents


TOTAL DOCUMENTS

504
(FIVE YEARS 73)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
Sergio Giardino

From a previous paper where we proposed a description of general relativity within the gravito-electromagnetic limit, we propose an alternative modified gravitational theory. As in the former version, we analyze the vector and tensor equations of motion, the gravitational continuity equation, the conservation of the energy, the energy-momentum tensor, the field tensor, and the constraints concerning these fields. The Lagrangian formulation is also exhibited as an unified and simple formulation that will be useful for future investigation.


Author(s):  
Jan Erik H. Weber ◽  
Peygham Ghaffari

AbstractThe mean drift in a porous seabed caused by long surface waves in the overlying fluid is investigated theoretically. We use a Lagrangian formulation for the fluid and the porous bed. For the wave field we assume inviscid flow, and in the seabed, we apply Darcy’s law. Throughout the analysis, we assume that the long-wave approximation is valid. Since the pressure gradient is nonlinear in the Lagrangian formulation, the balance of forces in the porous bed now contains nonlinear terms that yield the mean horizontal Stokes drift. In addition, if the waves are spatially damped due to interaction with the underlying bed, there must be a nonlinear balance in the fluid layer between the mean surface gradient and the gradient of the radiation stress. This causes, through continuity of pressure, an additional force in the porous layer. The corresponding drift is larger than the Stokes drift if the depth of the porous bed is more than twice that of the fluid layer. The interaction between the fluid layer and the seabed can also cause the waves to become temporally attenuated. Again, through nonlinearity, this leads to a horizontal Stokes drift in the porous layer, but now damped in time. In the long-wave approximation only the horizontal component of the permeability in the porous medium appears, so our analysis is valid for a medium that has different permeabilities in the horizontal and vertical directions. It is suggested that the drift results may have an application to the transport of microplastics in the porous oceanic seabed.


2021 ◽  
pp. 355-376
Author(s):  
Manousos Markoutsakis

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Machiko Hatsuda ◽  
Warren Siegel

Abstract The exceptional symmetry is realized perturbatively in F-theory which is the manifest U-duality theory. The SO(5) U-duality symmetry acts on both the 16 space-time coordinates and the 10 worldvolume coordinates. Closure of the Virasoro algebra requires the Gauss law constraints on the worldvolume. This set of current algebras describes a F-theory 10-brane. The SO(5) duality symmetry is enlarged to the SO(6) symmetry in the Lagrangian formulation. We propose actions of the F-theory 10-brane with SO(5) and SO(6) symmetries. The gauge fields of the latter action are coset elements of SO(6)/SO(6; ℂ) which include both the SO(5)/SO(5; ℂ) spacetime backgrounds and the worldvolume backgrounds. The SO(5) current algebra obtained from the Pasti-Sorokin-Tonin M5-brane Lagrangian leads to the theory behind M-theory, namely F-theory. We also propose an action of the perturbative M-theory 5-brane obtained by sectioning the worldvolume of the F-theory 10-brane.


2021 ◽  
Vol 111 (5) ◽  
Author(s):  
Maciej Dunajski ◽  
Wojciech Kryński

AbstractConformal geodesics are solutions to a system of third-order equations, which makes a Lagrangian formulation problematic. We show how enlarging the class of allowed variations leads to a variational formulation for this system with a third-order conformally invariant Lagrangian. We also discuss the conformally invariant system of fourth-order ODEs arising from this Lagrangian and show that some of its integral curves are spirals.


Sign in / Sign up

Export Citation Format

Share Document