Integration of a nonlinear energy sink and a piezoelectric energy harvester

2017 ◽  
Vol 38 (7) ◽  
pp. 1019-1030 ◽  
Author(s):  
Xiang Li ◽  
Yewei Zhang ◽  
Hu Ding ◽  
Liqun Chen
2021 ◽  
pp. 107754632199358
Author(s):  
Ali Fasihi ◽  
Majid Shahgholi ◽  
Saeed Ghahremani

The potential of absorbing and harvesting energy from a two-degree-of-freedom airfoil using an attachment of a nonlinear energy sink and a piezoelectric energy harvester is investigated. The equations of motion of the airfoil coupled with the attachment are solved using the harmonic balance method. Solutions obtained by this method are compared to the numerical ones of the pseudo-arclength continuation method. The effects of parameters of the integrated nonlinear energy sink-piezoelectric attachment, namely, the attachment location, nonlinear energy sink mass, nonlinear energy sink damping, and nonlinear energy sink stiffness on the dynamical behavior of the airfoil system are studied for both subcritical and supercritical Hopf bifurcation cases. Analyses demonstrate that absorbing vibration and harvesting energy are profoundly affected by the nonlinear energy sink parameters and the location of the attachment.


Author(s):  
Youzuo Jin ◽  
Kefu Liu ◽  
Deli Li ◽  
Liuyang Xiong ◽  
Lihua Tang

Abstract In this paper, a non-traditional variant nonlinear energy sink (NES) is developed for simultaneous vibration suppression and energy harvesting in a broad frequency band. The non-traditional variant NES consists of a cantilever beam attached by a pair of magnets at its free end, a pair of the so-called continuous-contact blocks, and a pair of coils. The beam is placed between the continuous-contact blocks. The constraint of the continuous-contact blocks forces the beam to deflect nonlinearly. Each of the magnet-coil pairs forms an electromagnetic energy harvester. Different from a traditional way that attaches the coils to the primary mass, the developed setup has the coils fixed to the base. First, the developed apparatus is described. Subsequently, the system modeling and parameter identification are addressed. The performance of the apparatus under transient responses is examined by using computer simulation. The results show that the proposed apparatus behaves similarly as the NES with the following features: 1:1 resonance, targeted energy transfer, initial energy dependence, etc.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ye-Wei Zhang ◽  
Chuang Wang ◽  
Bin Yuan ◽  
Bo Fang

This paper presents a novel design by integrating geometrical and material nonlinear energy sink (NES) with a piezoelectric-based vibration energy harvester under shock excitation, which can realize vibration control and energy harvesting. The nonlinear spring and hysteresis behavior of the NES could reflect geometrical and material nonlinearity, respectively. Two configurations of the piezoelectric device, including the piezoelectric element embedded between the NES mass and the single-degree-of-freedom system or ground, are utilised to examine the energy dissipated by damper and hysteresis behavior of NES and the energy harvested by the piezoelectric element. Similar numerical research methods of Runge-Kutta algorithm are used to investigate the two configurations. The energy transaction measure (ETM) is adopted to examine the instantaneous energy transaction between the primary and the NES-piezoelectricity system. And it demonstrates that the dissipated and harvested energy transaction is transferred from the primary system to the NES-piezoelectricity system and the instantaneous transaction of mechanical energy occupies a major part of the energy of transaction. Both figurations could realize vibration control efficiently.


Sign in / Sign up

Export Citation Format

Share Document