The effects of nonlinear energy sink and piezoelectric energy harvester on aeroelastic instability of an airfoil
The potential of absorbing and harvesting energy from a two-degree-of-freedom airfoil using an attachment of a nonlinear energy sink and a piezoelectric energy harvester is investigated. The equations of motion of the airfoil coupled with the attachment are solved using the harmonic balance method. Solutions obtained by this method are compared to the numerical ones of the pseudo-arclength continuation method. The effects of parameters of the integrated nonlinear energy sink-piezoelectric attachment, namely, the attachment location, nonlinear energy sink mass, nonlinear energy sink damping, and nonlinear energy sink stiffness on the dynamical behavior of the airfoil system are studied for both subcritical and supercritical Hopf bifurcation cases. Analyses demonstrate that absorbing vibration and harvesting energy are profoundly affected by the nonlinear energy sink parameters and the location of the attachment.