scholarly journals Differences in above-ground resource acquisition and niche overlap between a model invader (Phragmites australis) and resident plant species: measuring the role of fitness and niche differences in the field

Author(s):  
C. D. Robichaud ◽  
R. C. Rooney
2021 ◽  
Author(s):  
C. D. Robichaud ◽  
R.C Rooney

Abstract Identifying the mechanisms that result in a “high impact” invasive species can be difficult. Coexistence theory suggests that detrimental invasive species can be better predicted by incorporating both niche differences and fitness differences than examining niche overlap alone. Specifically, detrimental invasive species should take up shared limited resources more efficiently than their neighbouring resident species. While there is clear evidence that invasive Phragmites australis is successfully displacing resident species, there remains few field studies that attempt to quantify the niche overlap and fitness difference between P. australis and the species it is displacing in the field. Using P. australis we measured differences in photosynthetic performance (carbon assimilation rates, δ 13 C, photosynthetic water use efficiency, biomass), the effects of competition for photosynthetically active radiation, and niche overlap between P. australis and three resident freshwater wetland species ( Calamagrostis canadensis, Carex aquatilis, and Typha spp.) growing with or without interspecific competition . Invasive P. australis intercepted more photosynthetically active radiation, assimilated more carbon more efficiently, and had a larger niche region compared to resident species. Resident plant species showed a significant decrease in photosynthetic performance when growing in competition with P. australis and had a high probability of overlap onto the niche space of P. australis. These results provide evidence that the ability of P. australis to reduce the availability of a required resource and more efficiently use it over the growing season, while exhibiting high niche overlap with resident species, likely contributes directly to its success in North American freshwater wetlands.


2021 ◽  
Vol 30 (2) ◽  
pp. 365-384
Author(s):  
Elena Tello-García ◽  
Nancy Gamboa-Badilla ◽  
Enrique Álvarez ◽  
Laura Fuentes ◽  
Corina Basnou ◽  
...  

2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

2012 ◽  
Vol 279 (1736) ◽  
pp. 2269-2274 ◽  
Author(s):  
Daniel P. Bebber ◽  
Mark A. Carine ◽  
Gerrit Davidse ◽  
David J. Harris ◽  
Elspeth M. Haston ◽  
...  

Discovering biological diversity is a fundamental goal—made urgent by the alarmingly high rate of extinction. We have compiled information from more than 100 000 type specimens to quantify the role of collectors in the discovery of plant diversity. Our results show that more than half of all type specimens were collected by less than 2 per cent of collectors. This highly skewed pattern has persisted through time. We demonstrate that a number of attributes are associated with prolific plant collectors: a long career with increasing productivity and experience in several countries and plant families. These results imply that funding a small number of expert plant collectors in the right geographical locations should be an important element in any effective strategy to find undiscovered plant species and complete the inventory of the world flora.


2014 ◽  
Vol 95 (2) ◽  
pp. 392-403 ◽  
Author(s):  
Thomas M. Newsome ◽  
Guy-Anthony Ballard ◽  
Mathew S. Crowther ◽  
Peter J. S. Fleming ◽  
Christopher R. Dickman

Behaviour ◽  
1996 ◽  
Vol 133 (15-16) ◽  
pp. 1265-1279 ◽  
Author(s):  
Cliff H. Summers ◽  
Thomas J. Andrews

AbstractFemale green anoles, Anolis carolinensis, were paired in terraria to investigate behavioral components of social interaction. Resources (perching sites, prey, and males as potential mates) were limited to assess their importance to cohabiting females. During interaction, paired females exhibited aggressive social behavior which contributed to the development of dominant-subordinate relationships. Dominant status and its relationship to differential resource acquisition was defined primarily by frequency of displacement of another female. Along with displacement, dominant females also had increased frequency of assertion displays, challenge displays, attacks and biting (Figs 1 & 2). Subordinate females were displaced more often and assumed submissive postures. No differences were found between dominant and subordinate females for perch site selection, body color or in prey capturing latency or success (Figs 3 & 4). Perch site elevation was not different between dominant and subordinate females, but was significantly lower than males. The color of paired females was not different unless males were present, in which case dominant females were darker. Paired females also respond differently to courtship display (Fig. 5). Dominant females responded with displays significantly more often than subordinate females to male courtship, indicating receptivity. The role of dominant-subordinate relationships among female A. carolinensis may include courtship and reproductive success as an important component, with consequences for the outcome of aggressive and reproductive social interactions with males.


2022 ◽  
Vol 295 ◽  
pp. 110839
Author(s):  
Pablo Gómez Barreiro ◽  
Efisio Mattana ◽  
David Coleshill ◽  
Elena Castillo-Lorenzo ◽  
Sidi Sanogo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document