Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying

2015 ◽  
Vol 78 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Shi-Wei Liu ◽  
Qi Wei ◽  
Su-Ping Cui ◽  
Zuo-Ren Nie ◽  
Meng-Hao Du ◽  
...  
2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Ehsan Amirjan ◽  
Omid Mirzaee ◽  
Mohammad Reza Soleimani Dorcheh ◽  
Ali Soleimani Dorcheh

A crack-free silica aerogel monolith is a nanostructured material with so many surprising properties such as high specific surface area, high porosity, low dielectric constant, low density and outstanding heat insulation properties that were fabricated from a cheap water glass derived silicic acid solution.In this research , the OH surfaces of the wet gel were modified using a HMDZ/n-hexane or TMCS/n-hexane mixture followed by solvent exchange from water to n-hexane. The obtained surface modified wet gel was dried at different temperature under ambient pressure.The properties of hydrophobic silica aerogels synthesized by this new route were investigated by scanning electron microscopy (SEM), differential temperature analysis (DTA) and Fourier-transform infrared spectroscopy (FT-IR).The results showed that 20 wt% HMDZ as surface modifier and 75 °C as drying temperature resulted an acceptable hydrophobic silica aerogel with the density of 0.15 gr/cm³ and specific surface area of about 520 m²/gr.


2009 ◽  
Vol 25 (09) ◽  
pp. 1811-1815 ◽  
Author(s):  
LI Gui-An ◽  
◽  
◽  
ZHU Ting-Liang ◽  
YE Lu-Yuan ◽  
...  

Author(s):  
Wenbin Hu ◽  
Mengmeng Li ◽  
Wei Chen ◽  
Ning Zhang ◽  
Bo Li ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3192 ◽  
Author(s):  
Dong Chen ◽  
Xiaodong Wang ◽  
Wenhui Ding ◽  
Wenbing Zou ◽  
Qiong Zhu ◽  
...  

Owing to their ultra-low thermal conductivity, silica aerogels are promising thermal insulators; however, their extensive application is limited by their high production cost. Thus, scientists have started to explore low-cost and easy preparation processes of silica aerogels. In this work, a low-cost method was proposed to prepare silica aerogels with industrial silica hydrosol and a subsequent ambient pressure drying (APD) process. Various surfactants (cationic, amphoteric, or anionic) were added to avoid solvent exchange and surface modification during the APD process. The effects of various surfactants on the microstructure, thermal conductivity, and thermal stability of the silica aerogels were studied. The results showed that the silica aerogels prepared with a cationic or anionic surfactant have better thermal stability than that prepared with an amphoteric surfactant. After being heated at 600 °C, the silica aerogel prepared with a cationic surfactant showed the highest specific surface area of 131 m2∙g−1 and the lowest thermal conductivity of 0.038 W∙m−1∙K−1. The obtained low-cost silica aerogel with low thermal conductivity could be widely applied as a thermal insulator for building and industrial energy-saving applications.


2019 ◽  
Vol 11 (45) ◽  
pp. 5784-5792 ◽  
Author(s):  
Xiangping Ji ◽  
Juanjuan Feng ◽  
Chunying Li ◽  
Sen Han ◽  
Jiaqing Feng ◽  
...  

A silica aerogel with high surface area was prepared by an acid–base two-step catalytic sol–gel method under ambient pressure drying.


Sign in / Sign up

Export Citation Format

Share Document