scholarly journals Melonic dominance and the largest eigenvalue of a large random tensor

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Oleg Evnin
Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


2021 ◽  
Vol 9 (1) ◽  
pp. 19-21
Author(s):  
Zoran Stanić

Abstract We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.


10.37236/169 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Yanqing Chen ◽  
Ligong Wang

The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In this paper, we investigate Laplacian spread of graphs, and prove that there exist exactly five types of tricyclic graphs with maximum Laplacian spread among all tricyclic graphs of fixed order.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050068
Author(s):  
Hezan Huang ◽  
Bo Zhou

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. For integers [Formula: see text] and [Formula: see text] with [Formula: see text], we prove that among the connected graphs on [Formula: see text] vertices of given maximum degree [Formula: see text] with at least one cycle, the graph [Formula: see text] uniquely maximizes the distance spectral radius, where [Formula: see text] is the graph obtained from the disjoint star on [Formula: see text] vertices and path on [Formula: see text] vertices by adding two edges, one connecting the star center with a path end, and the other being a chord of the star.


2017 ◽  
Vol 5 (1) ◽  
pp. 296-300
Author(s):  
Yanna Wang ◽  
Rundan Xing ◽  
Bo Zhou ◽  
Fengming Dong

Abstract The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We determine the unique non-starlike non-caterpillar tree with maximal distance spectral radius.


2017 ◽  
Vol 06 (03) ◽  
pp. 1750011
Author(s):  
Debapratim Banerjee ◽  
Arup Bose

We consider four specific [Formula: see text] sparse patterned random matrices, namely the Symmetric Circulant, Reverse Circulant, Toeplitz and the Hankel matrices. The entries are assumed to be Bernoulli with success probability [Formula: see text] such that [Formula: see text] with [Formula: see text]. We use the moment approach to show that the expected empirical spectral distribution (EESD) converges weakly for all these sparse matrices. Unlike the Sparse Wigner matrices, here the random empirical spectral distribution (ESD) converges weakly to a random distribution. This weak convergence is only in the distribution sense. We give explicit description of the random limits of the ESD for Reverse Circulant and Circulant matrices. As in the non-sparse case, explicit description of the limits appears to be difficult to obtain in the Toeplitz and Hankel cases. We provide some properties of these limits. We then study the behavior of the largest eigenvalue of these matrices. We prove that for the Reverse Circulant and Symmetric Circulant matrices the limit distribution of the largest eigenvalue is a multiple of the Poisson. For Toeplitz and Hankel matrices we show that the non-degenerate limit distribution exists, but again it does not seem to be easy to obtain any explicit description.


Sign in / Sign up

Export Citation Format

Share Document