Optimum design of a novel redundantly actuated parallel manipulator with multiple actuation modes for high kinematic and dynamic performance

2015 ◽  
Vol 83 (1-2) ◽  
pp. 631-658 ◽  
Author(s):  
Dong Liang ◽  
Yimin Song ◽  
Tao Sun ◽  
Gang Dong
2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Chunshi Feng ◽  
Shuang Cong ◽  
Weiwei Shang

In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.


2014 ◽  
Vol 28 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Zhufeng Shao ◽  
Xiaoqiang Tang ◽  
Liping Wang ◽  
Dengfeng Sun

Sign in / Sign up

Export Citation Format

Share Document